Oxidative dehydrogenation of propane with cobalt, tungsten and molybdenum based materials

Maurin Salamanca-Gúzman, Yordy Enrique Licea-Fonseca, Adriana Echavarría-Isaza, Arnaldo Faro, Luz Amparo Palacio-Santos

Abstract


Oxidative dehydrogenation of propane is a reliable alternative for olefins production. This paper presents the results obtained on oxidative dehydrogenation of propane by using two materials based on cobalt, tungsten, and molybdenum. The materials were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), temperature programmed reduction (TPR), thermogravimetric analysis (TGA), and differential thermal analysis (DTA). The CoMoϕy material was calcined at 623 K, transforming itself to β-CoMoO4 phase (CoMoϕ623), the same phase is observed when the material is calcined at 873 K (CoMoϕy873). CoMoϕy623 showed the best performance in oxidative dehydrogenation of propane, a yield to propene of 3.4% was obtained at 623 K using a space velocity of 100 mLg-1min-1. CoWsϕy was calcined at 673 K, a low crystallinity wolframite was obtained. This material has a high selectivity to propene and low yield. CoMoϕy873 has a selectivity and conversion within the range of the results reported in the literature. This is a prospective catalyst for the oxidative dehydrogenation of propane; it was stable for 24 h of continuous operation at 773 K.


Keywords


Oxidative dehydrogenation;propane; cobalt; tungsten; molybdenum

Full Text:

PDF

References


K. G. Mittal, “Cracking paraffinic hydrocarbons to make alpha olefins—a review”, J. Chem. Technol. Biotechnol., vol. 36, pp. 291–299, 1986. http://onlinelibrary.wiley.com/doi/10.1002/jctb.280360702/abstract

D. Sanfilippo, I. Miracca, “Dehydrogenation of paraffins: synergies between catalyst design and reactor engineering”, Catal. Today, vol. 111, no. 1–2, pp. 133–139, 2006. http://www.sciencedirect.com/science/article/pii/S0920586105007145

F. Cavani, N. Ballarini, A. Cericola, “Oxidative dehydrogenation of ethane and propane: How far from commercial implementation?”, Catal. Today, vol. 127, no. 1–4, pp. 113–131, 2007. http://www.sciencedirect.com/science/article/pii/S0920586107003124

A. F. Wagner, I. R. Slagle, D. Sarzynski, D. Gutman, “Experimental and theoretical studies of the ethyl + oxygen reaction kinetics”, J. Phys. Chem., vol. 94, no. 5, pp. 1853–1868, 1990. http://pubs.acs.org/doi/abs/10.1021/j100368a026

C. A. Carrero, R. Schloegl, I. E. Wachs, R. Schomaecker, “Critical Literature Review of the Kinetics for the Oxidative Dehydrogenation of Propane over Well-Defined Supported Vanadium Oxide Catalysts”, ACS Catal., vol. 4, no. 10, pp. 3357–3380, 2014. http://pubs.acs.org/doi/abs/10.1021/cs5003417

F. Cavani, F. Trifirò, “The oxidative dehydrogenation of ethane and propane as an alternative way for the production of light olefins”, Catal. Today, vol. 24, no. 3, pp. 307–313, 1995. http://www.sciencedirect.com/science/article/pii/092058619500051G

H. H. Kung, M. C. Kung, “Oxidative dehydrogenation of alkanes over vanadium-magnesium-oxides”, Appl. Catal. A Gen., vol. 157, no. 1–2, pp. 105–116, 1997. http://www.sciencedirect.com/science/article/pii/S0926860X97000288

K. Alexopoulos, M.-F. Reyniers, G. B. Marin, “Reaction path analysis of propane selective oxidation over V2O5 and V2O5/TiO2”, J. Catal., vol. 289, pp. 127–139, 2012. http://www.sciencedirect.com/science/article/pii/S0021951712000401

A. Qiao, V. N. Kalevaru, J. Radnik, A. Srihari Kumar, N. Lingaiah, P. S. Sai Prasad, A. Martin, “Oxidative dehydrogenation of ethane to ethylene over V2O5/Nb2O5 catalysts”, Catal. Commun., vol. 30, pp. 45–50, 2013. http://www.sciencedirect.com/science/article/pii/S1566736712004049

P. Viparelli, “Oxidative dehydrogenation of propane over vanadium and niobium oxides supported catalysts”, Appl. Catal. A Gen., vol. 184, no. 2, pp. 291–301, 1999. http://www.sciencedirect.com/science/article/pii/S0926860X99001040

X. Fan, J. Li, Z. Zhao, Y. Wei, J. Liu, A. Duan, G. Jiang, “Synthesis of a new ordered mesoporous NiMoO4 complex oxide and its efficient catalytic performance for oxidative dehydrogenation of propane”, J. Energy Chem., vol. 23, no. 2, pp. 171–178, 2014. http://www.sciencedirect.com/science/article/pii/S2095495614601327

B. Pillay, M. R. Mathebula, H. B. Friedrich, “The oxidative dehydrogenation of n-hexane over Ni–Mo–O catalysts”, Appl. Catal. A Gen., vol. 361, no. 1–2, pp. 57–64, 2009. http://www.sciencedirect.com/science/article/pii/S0926860X09002385

F. Dury, M. . Centeno, E. . Gaigneaux, P. Ruiz, “An attempt to explain the role of CO2 and N2O as gas dopes in the feed in the oxidative dehydrogenation of propane”, Catal. Today, vol. 81, no. 2, pp. 95–105, 2003.

http://www.sciencedirect.com/science/article/pii/S0920586103001202

G. Che-Galicia, R. Quintana-Solórzano, R. S. Ruiz-Martínez, J. S. Valente, C. O. Castillo-Araiza, “Kinetic modeling of the oxidative dehydrogenation of ethane to ethylene over a MoVTeNbO catalytic system”, Chem. Eng. J., vol. 252, pp. 75–88, 2014. http://www.sciencedirect.com/science/article/pii/S1385894714004744

P. Sazama, N. K. Sathu, E. Tabor, B. Wichterlová, Š. Sklenák, Z. Sobalík, “Structure and critical function of Fe and acid sites in Fe-ZSM-5 in propane oxidative dehydrogenation with N2O and N2O decomposition”, J. Catal., vol. 299, pp. 188–203, 2013. http://www.sciencedirect.com/science/article/pii/S0021951712004034

M. A. Botavina, G. Martra, Y. A. Agafonov, N. A. Gaidai, N. V. Nekrasov, D. V. Trushin, S. Coluccia, A. L. Lapidus, “Oxidative dehydrogenation of C3–C4 paraffins in the presence of CO2 over CrOx/SiO2 catalysts”, Appl. Catal. A Gen., vol. 347, no. 2, pp. 126–132, 2008. http://www.sciencedirect.com/science/article/pii/S0926860X08003529

M. A. Larrubia, J. M. Blasco, L. J. Alemany, C. Herrera, “Estudio de la catálisis de la deshidrogenación oxidativa de l propano”, Ing. Química, vol. 424, pp. 132–144, 2005.

B. Solsona, F. Ivars, A. Dejoz, P. Concepción, M. I. Vázquez, J. M. López Nieto, “Supported Ni–W–O Mixed Oxides as Selective Catalysts for the Oxidative Dehydrogenation of Ethane”, Top. Catal., vol. 52, no. 6–7, pp. 751–757, 2009. http://link.springer.com/article/10.1007/s11244-009-9206-4

M. Salamanca, Y. E. Licea, A. Echavarria, A. C. Faro Jr., L. A. Palacio, “Hydrothermal synthesis of new wolframite type trimetallic materials and their use in oxidative dehydrogenation of propane”, Phys. Chem. Chem. Phys., vol. 11, no. 41, pp. 9583–9591, 2009. http://pubs.rsc.org/en/Content/ArticleLanding/2009/CP/b907679d#!divAbstract

J. Velasquez, A. Echavarria, A. Faro, L. A. Palacio, “Propane Oxidative Dehydrogenation on ZnCoMo and NiCoMo Catalysts Obtained from ϕy and ϕx Precursors” Ind. Eng. Chem. Res., vol. 52, no. 16, pp. 5582–5586, 2013. http://pubs.acs.org/doi/abs/10.1021/ie3025856

H. Pezerat, “Problems about non stoichiometry in some zinc cobalt and nickel molybdate hydrates”, Bull. la Soc. Fr. Mineral. Cristallogr., vol. 90, pp. 549–552, 1967.

D. Levin, S. L. Soled, J. Y. Ying, “Crystal Structure of an Ammonium Nickel Molybdate Prepared by Chemical Precipitation”, Inorg. Chem., vol. 35, no. 14, pp. 4191–4197, 1996. http://pubs.acs.org/doi/abs/10.1021/ic951200s

G. W. Smirth, “The crystal structures of cobalt molybdate CoMoO4 and nickel molibdate NiMoO4”, Acta Crytallographica, vol. 15, pp. 1054–1057, 1962. http://scripts.iucr.org/cgi-bin/paper?a03633

J. Brito, “Effect of Phase Composition of the Oxidic Precursor on the HDS Activity of the Sulfided Molybdates of Fe(II), Co(II), and Ni(II)”, J. Catal., vol. 171, no. 2, pp. 467–475, 1997. http://www.sciencedirect.com/science/article/pii/S0021951797917966

M. Suvanto, J. Räty, T. A. Pakkanen, “Catalytic activity of carbonyl precursor based W/Al2O3 and CoW/Al2O3 catalysts in hydrodesulfurization of thiophene”, Appl. Catal. A Gen., vol. 181, no. 1, pp. 189–199, 1999. http://www.sciencedirect.com/science/article/pii/S0926860X98004323

I. Matsuura, S. Mizuno, H. Hashiba, “Acidic properties of molybdate-based catalysts for propylene oxidation”, Polyhedron, vol. 5, no. 1–2, pp. 111–117, 1986. http://www.sciencedirect.com/science/article/pii/S0277538700848950

A. Deoliveira, J. Ferreira, M. Silva, G. Braga, L. Soledade, M. Mariaaldeiza, C. Paskocimas, S. Lima, E. Longo, A. Gouveiadesouza, “Yellow ZnxNi1−xWO4 pigments obtained using a polymeric precursor method”, Dye. Pigment., vol. 77, no. 1, pp. 210–216, 2008. http://www.sciencedirect.com/science/article/pii/S0143720807001052

G. M. Clark, W. P. Doyle, “Infra-red spectra of anhydrous molybdates and tungstates”, Spectrochim. Acta, vol. 22, no. 8, pp. 1441–1447, 1966. http://www.sciencedirect.com/science/article/pii/0371195166801376

S. A. T. Redfern, “Hard-mode infrared study of the ferroelastic phase transition in CuWO4 – ZnWO4 mixed crystals,” Phys. Rev. B, vol. 48, no. 9, pp. 5761–5765, 1993. http://journals.aps.org/prb/abstract/10.1103/PhysRevB.48.5761

S. Sugiyama, “Enhancement of the catalytic activities in propane oxidation and H–D exchangeability of hydroxyl groups by the incorporation with cobalt into strontium hydroxyapatite”, J. Catal., vol. 214, no. 1, pp. 8–14, 2003. http://www.sciencedirect.com/science/article/pii/S002195170200101X

D. Stern, “Propane Oxydehydrogenation over Molybdate-Based Catalysts”, J. Catal., vol. 167, no. 2, pp. 550–559, 1997. http://www.sciencedirect.com/science/article/pii/S0021951797915682

B. Y. Jibril, S. Ahmed, “Oxidative dehydrogenation of propane over Co, Ni and Mo mixed oxides/MCM-41 catalysts: Effects of intra- and extra-framework locations of metals on product distributions”, Catal. Commun., vol. 7, no. 12, pp. 990–996, 2006. http://www.sciencedirect.com/science/article/pii/S156673670600121X


Abstract : 1384 PDF : 873

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Esta publicación hace parte del Sistema de Revistas de la Universidad de Antioquia
¿Quieres aprender a usar el Open Journal system? Ingresa al Curso virtual
Este sistema es administrado por el Programa Integración de Tecnologías a la Docencia
Universidad de Antioquia
Powered by Public Knowledge Project