Clay surface characteristics using atomic force microscopy

Ricardo Andrés García-León, Eder Norberto Flórez-Solano, Carlos Humberto Acevedo-Peñaloza


The first component for the manufacture of masonry products used in construction is clay, which provides the plasticity that facilitates the molding and handling of the product. The second component is the feldspar in form of alumina (Al2O3) which is used as flux. The third one is silica (SiO2) which is used as a filling material and stabilizer. These elements are determined by chemical composition using fluorescence analysis or X-ray diffraction, which is the basis of the modern classification of minerals. Thereby, the main objective of this research is to study the surface characteristics of clay samples from an industrial company producing H-10 blocks in the region of Norte de Santander, by studying the surfaces of the samples selected through the analysis by Atomic Force Microscopy, in order to compare the results with those found in the literature, and at the same time taking into account the chemical elements in their highest composition. The results show that this is a technique that allows the identification of clay components, thus validating what has been found in physical and chemical analysis, expecting to provide a scientific contribution by AFM, because there is little information related to the characterization topography of clay materials.


Clays, masonry, FRX, DRX, AFM

Full Text:



O. Sahin, S. Magonov, C. Su, C. F. Quate, and O. Solgaard, “An

atomic force microscope tip designed to measure time-varying

nanomechanical forces,” Nature Nanotechnology, vol. 2, no. 8, pp.

–514, Jul. 2007.

E. A. López and S. D. Solares, “El microscopio de fuerza

atómica: métodos y aplicaciones,” Revista de la Universidad del Valle

Guatemala, vol. 28, no. 1, pp. 14–28, 2014.

(2012) Atomic force microscopy. University of Rochester.

Accessed Apr. 24, 2017. [Online]. Available:


V. Ivanov, J. Chu, V. Stabnikov, and B. Li, “Estrengthening of

soft marine clay using bioencapsulation,” Journal Marine

Georesources & Geotechnology, vol. 33, no. 4, pp. 320–324, Jan.

S. Pineda, Z. J. Han, and K. Ostrikov, “Plasma-enabled carbon

nanostructures for early diagnosis of neurodegenerative diseases,”

Materials, vol. 7, no. 7, pp. 4896–4929, Jun. 2014.

L. Vázquez. Afm (atomic force microscope). [Online]. Available:

N. S. et al., “Characterization of nanoreinforcement dispersion in

inorganic nanocomposites: A review,” Materials, vol. 7, no. 6, pp.

–4181, May 2014.

S. E. et al., “Manipulation of the catalyst-support interactions for

inducing nanotube forest growth,” J. Appl. Phys., vol. 109, no. 4, pp.

303.1–044 303.7, Feb. 2011.

Y. Kobayashi, V. Salgueiriño, and L. M. Liz, “Deposition of silver

nanoparticles on silica spheres by pretreatment steps in electroless

plating,” Chemistry of Materials, vol. 13, no. 5, pp. 1630–1633, Apr.

L. B. Monroy, J. J. Olaya, M. Rivera, A. Ortiz, and G. Santana, “Growth study of y-ba-cu-o on buffer layers and different substrates made by ultrasonic spray pyrolysis,” Rev. Latinoam. Metal. y Mater., vol. 32, no. 1, pp. 21–29, Jan. 2012.

K. Kim, B. A. Lee, X. H. Piao, H. J. Chung, and Y. J. Kim, “Surface

characteristics and bioactivity of an anodized titanium surface,” J. Periodontal Implant Sci., vol. 43, no. 4, pp. 198–205, Aug. 2012.

X. W. T. et al., “In vitro effect of a corrosive hostile ocular surface on candidate biomaterials for keratoprosthesis skirt,” Br. J. Ophthalmol., vol. 96, pp. 1252–1258, Sep. 2012.

T. Öhlund, J. Örtegren, S. Forsberg, and H. E. Nilsson, “Paper surfaces for metal nanoparticle inkjet printing,” Appl. Surf. Sci., vol.

, pp. 731–739, Oct. 2012.

P. Henrique, C. Camargo, K. G. Satyanarayana, and F. Wypych,

“Nanocomposites: Synthesis, structure, properties and new application opportunities,” Mater. Res., vol. 12, no. 1, pp. 1–39, Jan.

M. R. Belkhedkar, A. U. Ubale, Y. S. Sakhare, N. Zubair, and

M. Musaddique, “Characterization and antibacterial activity of nanocrystalline mn doped fe2o3 thin films grown by successive ionic

layer adsorption and reaction method,” J. Assoc. Arab Univ. Basic

Appl. Sci, vol. 21, pp. 38–44, Oct. 2016.

P. Lu and Y. L. Hsieh, “Highly pure amorphous silica nano-disks from

rice straw,” JPowder Technol., vol. 225, pp. 149–155, Oct. 2012.

D. A. C. Brownson, D. K. Kampouris, and C. E. Banks, “Graphene

electrochemistry: Fundamental concepts through to prominent

applications,” Chemical Society Reviews, vol. 41, no. 21, pp.

–6976, Nov. 2012.

B. R. B. et al. (1999, Dec. 9) Atomic force microscopy

study of clay mineral dissolution atomic force. [Online]. Available:


M. Prasad, M. Kopycinska, U. Rabe, and W. Arnold, “Measurement

of young’s modulus of clay minerals using atomic force acoustic

microscopy,” Geophys. Res. Lett., vol. 29, no. 8, pp. 13.1–13.4, Apr.

V. Gupta, M. A. Hampton, A. V. Nguyen, and J. D. Miller, “Crystal

lattice imaging of the silica and alumina faces of kaolinite using

atomic force microscopy,” J. Colloid Interface Sci., vol. 352, no. 1, pp.

–80, Dec. 2010.

R. A. García and R. Bolívar, “Caracterización hidrométrica de las

arcillas utilizadas en la fabricación de productos cerámicos en ocaña, norte de santander,” INGE CUC, vol. 13, no. 1, pp. 47–56, 2017.

R. A. García, R. Bolívar, and E. N. Flórez, “Validación de las propiedades físico-mecánicas de bloques h-10 fabricados en ocaña

norte de santander y la región,” Ingenio UFPSO, vol. 10, no. 1, pp.

–26, 2016.

F. D. B. de Sousa and C. H. Scuracchio, “The use of atomic force

microscopy as an important technique to analyze the dispersion of

nanometric fillers and morphology in nanocomposites and polymer

blends based on elastomers,” Polímeros, vol. 24, no. 6, pp. 661–672,

Nov. 2014.

X. Zhang, H. Yi, Y. Zhao, and S. Song, “Quantitative determination

of isomorphous substitutions on clay mineral surfaces through afm

imaging: A case of mica,” Colloids Surfaces A Physicochem. Eng. Asp,

vol. 533, pp. 55–60, Nov. 2017.

M. Brigatti, E. Galán, and B. K. G. Theng, “Chapter 2 structures and

mineralogy of clay minerals,” vol. 1, pp. 19–86, Dec 2006.

V. Gélinas and D. Vidal, “Determination of particle shape distribution

of clay using an automated afm image analysis method,” Powder

Technol., vol. 203, no. 2, pp. 254–264, Nov. 2010.

R. A. Schoonheydt, “Reflections on the material science of clay

minerals,” Appl. Clay Sci., vol. 131, pp. 107–112, Oct. 2015.

M. B. Roquet, “Mineralogía de la pegmatita casa de piedra, grupo

pegmatítico villa praga - las lagunas, subgrupo potrerillos, san luis,

argentina,” in 11° Congreso de mineralogía y metalogenia, San Luis,

Argentina, 2013, pp. 133–138.

S. M. Rozo, J. Sánchez, and J. F. Gelves, “Evaluación de minerales

alumino silicatos de norte de santander para fabricar piezas

cerámicas de gran formato,” Rev. Fac. Ing., vol. 24, no. 38, pp. 53–61,

N. J. Perales and M. Barrera, “Análisis estructural por drx de una

arcilla natural colombiana modificada por pilarización,” Rev. Invest.

Univ. Quindío., vol. 24, no. 1, pp. 100–106, 2013.

E. Ramos, J. J. Guzmán, M. C. Sandoval, and Y. Gallaga, “Caracterización de arcillas del estado de guanajuato y su potencial

aplicación en cerámica,” Acta Univ., vol. 12, no. 1, pp. 23–30, 2002.

N. M. P. D. et al., “Morphological characterization of soil clay fraction

in nanometric scale,” Powder Technol., vol. 241, pp. 36–42, Jun. 2013.

A. Sachan, “Use of atomic force microscopy (afm) of microfabric

study of cohesive soils,” J. Microsc., vol. 232, no. 3, pp. 422–431, Nov.

L. F. Vesga, “Equivalent effective stress and compressibility of unsaturated kaolinite clay subjected to drying,” J. Geotech. Geoenvironmental Eng., vol. 134, no. 3, pp. 366–378, Mar. 2008.

C. M. F. Vieira, R. Sánchez, and S. N. Monteiro, “Characteristics

of clays and properties of building ceramics in the state of rio de

janeiro, brazil,” Constr. Build. Mater., vol. 22, no. 5, pp. 781–787, May

J. D. Santos, P. Y. Malagón, and E. M. Cordoba, “Caracterización de

arcillas y preparación de pastas cerámicas para la fabricación de

tejas y ladrillos en la región de barichara, santander,” DYNA, vol. 78,

no. 167, pp. 50–58, Jul. 2011.

C. M. Ríos, “Uso de materias primas colombianas para el desarrollo

de baldosa cerámicas con alto grado de gresificación,” M.S. thesis,

Facultad de Minas Escuela de Ingeniería de Materiales, Universidad

Nacional de Colombia, Medellín, Colombia, 2009.

L. C. Illera, “Raw materials for the ceramics industry from norte de

santander. i. mineralogical, chemical and physical characterization,”

Rev. Fac. Ing. Univ. Antioquia, no. 80, pp. 31–37, Jul. 2016.

DOI: Abstract : 994 PDF : 590

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Esta publicación hace parte del Sistema de Revistas de la Universidad de Antioquia
¿Quieres aprender a usar el Open Journal system? Ingresa al Curso virtual
Este sistema es administrado por el Programa Integración de Tecnologías a la Docencia
Universidad de Antioquia
Powered by Public Knowledge Project