Aplicación de herramientas informáticas al diagnóstico de la combustión en motores

John R. Agudelo S., Álvaro Delgado M. y Elkin Gutiérrez V.*

Resumen
En este artículo se presentan aspectos básicos referentes al análisis del fenómeno de la combustión en motores de combustión interna alternativos (MCIA), por medio de herramientas informáticas; con este fin se ha desarrollado el programa DIATERM, que emplea lenguajes de programación gráfica de última generación. A continuación se describe el modelo termodinámico en el cual está basado DIATERM y se muestra el potencial de la herramienta al aplicarla al análisis de datos de presión, en la cámara de combustión de un motor diesel turboalimentado, cuando se varía el grado de carga y se mantiene uniforme el régimen de velocidad.

--------- Palabras clave: combustión, motores, diagnóstico, modelo, lenguajes de programación, equilibrio químico.

Abstract
This paper describes the fundamental topics concerning to analysis of combustion process in internal combustion engines, when latest generation computational tools are employed. For achieving this, it has been developed DIATERM using graphic programming languages. It is also described the thermo-dynamical model in which is based DIATERM. In the same way it is showed the potential of this computational tool when it is applied to analysis of pressure data in the combustion chamber of a turbocharged diesel engine, changing the load while rotational speed is maintained constant.

--------- Key words: combustion, engines, diagnosis, modeling, programming languages, chemical equilibrium.

* Grupo Ciencia y Tecnología del Gas y Uso Racional de la Energía. Facultad de Ingeniería. Universidad de Antioquia. radian@udea.edu.co.
Introducción

Desde sus comienzos, la industria automotriz se ha visto enfrentada a dos serios desafíos: aumentar la eficiencia de los motores y disminuir el consumo de combustible. Hoy día la situación se torna aún más complicada debido al establecimiento de políticas y legislaciones que buscan preservar el medio ambiente. Y es que prácticamente la producción automotriz actual está dirigida a satisfacer las cada vez más exigentes normas ambientales, aunque para ello se tenga que sacrificar algo de potencia o de eficiencia.

Por estas razones es esencial tener información, detallada y precisa, de los fenómenos que tienen lugar dentro de la cámara de combustión de los MCIA, lugar éste donde se originan la potencia y los gases de escape de los motores. Según se realice el proceso de combustión se podrá calificar su eficiencia y evaluar cómo influyen ciertos parámetros en su desempeño, sin olvidar las restricciones impuestas por la termodinámica, y de esta forma diagnosticar y caracterizar el proceso de combustión.

Afortunadamente, en la actualidad se cuenta con herramientas electrónicas e informáticas que permiten llevar a cabo tales procedimientos, con instrumentos que ofrecen precisión razonable y a costos asequibles.

A continuación se describe un modelo termodinámico para interpretar el proceso de combustión en un MCIA, a partir de las señales de presión en la cámara de combustión y la de posición angular del cigüeñal. Finalmente, se valida este modelo en un motor diesel turboalimentado, con el fin de determinar la evolución de los parámetros indicados y la tasa de liberación de calor.

Descripción del modelo termodinámico [1-3]

El modelo de combustión empleado tiene carácter de diagnóstico y es de los denominados termodinámicos de una zona, ya que no se difiere en ningún momento entre zona de no-que-mados y zona de productos o gases quemados. El desarrollo de tales métodos de diagnóstico, de la combustión en MCIA (tanto de encendido provocado como de encendido por compresión), parte de la medición de la presión en cámara por medio de captadores piezoelectríticos, que luego de ser convenientemente acondicionada en cuanto al promedio de los diversos ciclos medidos, las técnicas de filtrado, las referencias angular y de presión absoluta, etc., permite, mediante un balance energético, estimar la evolución del calor liberado instantáneamente por el combustible.

La ecuación de la energía propicia diferentes aproximaciones, afectadas todas ellas, en cualquier caso, por la variación en el tiempo de la energía interna de los gases contenidos en la cámara, la cual depende, principalmente, de la temperatura, el dosado y la composición de la mezcla aire-combustible.

Las hipótesis relevantes del modelo son las siguientes:

- La presión es uniforme en toda la cámara; es decir, la mezcla de gases sin quemar y los productos de combustión están sometidos a la misma presión. Además, toda variación de presión dentro de la cámara se transmite en forma instantánea.

- La temperatura es homogénea en toda la cámara; es decir, la mezcla de gases sin quemar y los productos de combustión están a la misma temperatura. Además, cualquier variación de temperatura dentro de la cámara se transmite en forma instantánea.

- Se acepta la validez de la ecuación de estado de los gases ideales, para todos los componentes de la mezcla dentro del cilindro, estén quemados o sin quemar.

- Se supone que en cualquier instante el dosado de combustión es uniforme en cada punto de la mezcla.

1 Dosado es la relación combustible aire.
Se considera que los productos quemados están constituidos por doce especies que se encuentran en equilibrio químico, las cuales se enumeran más adelante.

El objetivo central de este modelo es conocer la cantidad de energía química liberada en forma de calor durante el ciclo por el combustible. Así, por medio del poder calorífico interior y haciendo algunas hipótesis importantes, como plantean en [4], se puede llegar a conocer la fracción de masa de combustible quemada en cada momento. Este parámetro, finalmente, da una idea de la calidad de la transformación del combustible al momento de producirse la combustión.

El modelo parte de la primera ley de la termodinámica aplicada a un sistema cerrado; es decir, entre aquellos momentos en los cuales están cerradas las válvulas de admisión y escape. Se suponen despreciables las fugas de la mezcla aire-combustible a través de los anillos (véase figura 1):

\[
\frac{dQ_{neto}}{d\theta} = \frac{dU}{d\theta} + pdV
\]

Donde:

\(dQ_{neto}\) es la tasa neta de intercambio de calor en el volumen de control,

\(dU = mC_vdT\), el incremento de energía interna del sistema,

\(dW = pdV\), la tasa de transferencia de trabajo en las fronteras del sistema.

\(d\theta\), el diferencial de ángulo equivalente a la precisión del codificador angular.

\[
\frac{dQ_{chem}}{d\theta} = \frac{mC_v}{mR} \left(\frac{pV}{mR} \right) \left(\frac{1}{d\theta} + p \frac{dV}{d\theta} \right)
\]

\[
\frac{dQ_{lost}}{d\theta} = \frac{1}{\gamma - 1} (pdV + Vdp) \left(\frac{1}{d\theta} + p \frac{dV}{d\theta} + \frac{dQ_{lost}}{d\theta} \right)
\]

Donde \(\gamma\) es la razón entre los calores específicos a presión constante y volumen constante, respectivamente, el término \(pdV\) se calcula directamente a partir de las señales de presión de entrada al modelo, y el volumen se calcula con la geometría del mecanismo biela-manivela (véase figura 2).

![Figura 1](image1.png)
Figura 1 Volumen de control para el análisis de la liberación de calor en cámara de combustión

![Figura 2](image2.png)
Figura 2 Geometría del mecanismo biela-manivela [5]. B es el diámetro del cilindro, L la carrera del pistón, TC es el punto muerto superior, BC el punto muerto inferior, l la longitud de la biela y a es la longitud de la manivela
\[V(\theta) = V_c \left[1 + \frac{R_c - 1}{2} \left[R + 1 - \cos \theta - \sqrt{(R^2 - \sin^2 \theta)} \right] \right] \]

Donde:

\[V_c \]: el volumen en la cámara de combustión,

\[R_c \]: la razón de compresión,

\[R \]: la razón de longitudes de biela a manivela y

\[\theta \]: la posición angular del cigüeñal durante el ciclo

Continuando con (1), ecuación general de conservación de la energía, el cálculo del exponente polítopico se realiza, a partir de los valores específicos molares de cada componente, mediante la siguiente expresión:

\[\bar{C}_{pm} = \sum n_i \bar{C}_{pi} \]

Donde:

\[C_{pm} \]: el calor específico a presión constante de la mezcla en base molar,

\[C_{pi} \]: el calor específico a presión constante en base molar de las diferentes especies,

\[n_i \]: el número de moles de cada especie y

\[n_m \]: el número total de moles de la mezcla.

El calor específico a presión constante para cada especie se calcula, según [6]:

\[c_p^0 = \bar{R} \left(a_1 + a_2 T + a_3 T^2 + a_4 T^3 + a_5 T^4 \right) \]

Donde los coeficientes, \(a_n \), se encuentran tabulados en [6]. Luego se puede calcular el \(c_p^0 \) de la mezcla, con el \(c_v^0 \) de cada especie, en base molar, de la siguiente manera:

\[c_p^0 = c_v^0 \times R \]

Lo cual da como resultado:

\[\gamma = \frac{c_p^0}{c_v^0} \]

Como se ha dicho, las propiedades están en función del número de moles de cada especie, lo cual hace necesario emplear un modelo de equilibrio químico.

Submodelo de equilibrio químico

Con el fin de determinar la composición de los gases quemados se hizo la adaptación de los métodos propuestos en las referencias [7 y 8], en los que se supone una composición de los productos de combustión en equilibrio químico, que contiene doce especies: \(Ar, CO, CO_2, H, H_2, H_2O, N, N_2, NO, O, O_2 \) y \(OH \).

El submodelo calcula la concentración (o número de moles) de cada especie según las condiciones de presión, temperatura y composición de los reactivos, a partir de la reacción real:

\[combustible + aire \rightarrow nH + nO + nN + nH_2 + nOH + nCO + nNO + nO_2 + nH_2O + nCO_2 + nN_2 + nAr \]

Donde el combustible es de la forma \(C/H_2O/N_m \) y el aire de combustión se supone que tiene la siguiente composición molar, dada en tanto por uno:

\[aire = 0.78084 N_2 + 0.20946 O_2 + 0.00033 CO_2 + 0.00037 Ar + n_s (H_2O) \]

Donde \(n_s \) representa la cantidad de humedad del aire de combustión.

Teniendo en cuenta que el argón es un gas inerte, quedan entonces oce incógnitas. Para su determinación se plantean, por una parte, las cuatro ecuaciones de balance atómico para el carbono, oxígeno, hidrógeno y nitrógeno, mientras que las siete ecuaciones restantes se obtienen empleando las constantes de equilibrio para las siguientes reacciones, que pueden escogerse libremente, siempre y cuando no sean redundantes:

\[\frac{3}{2}H_2 \rightarrow H \]

\[\frac{3}{2}O_2 \rightarrow O \]

\[\frac{3}{2}N_2 \rightarrow N \]

\[\frac{3}{2}H_2 + \frac{3}{2}O_2 \rightarrow OH \]

\[\frac{1}{2}N_2 + \frac{1}{2}O_2 \rightarrow NO \]

\[H_2 + \frac{1}{2}O_2 \rightarrow H_2O \]

\[CO + \frac{1}{2}O_2 \rightarrow CO_2 \]
De esta forma se tiene un sistema no lineal, de once ecuaciones con once incógnitas, que puede resolverse por cualquier método iterativo, como se hace en [7] y [8], y se determinan, entonces, el número de moles de cada una de las doce especies mencionadas y las diferentes propiedades termodinámicas durante el ciclo, así como las capacidades térmicas y el exponente polítropico.

Finalmente, el término correspondiente a la tasa de transferencia de calor convectivo a las paredes del cilindro, en la ecuación (1), \(dQ_{\text{loss}} \), se calcula mediante el submodelo de pérdidas de calor.

Submodelo para determinar las pérdidas de calor

En el modelo se emplea la ecuación propuesta por Woschni [9], por ser una de las más extendidas y por considerar que ofrece buenos resultados tanto en motores diesel como en motores de encendido por chispa. El submodelo calcula la cantidad de calor transmitida por convección y por radiación, conjuntamente por la mezcla de reactivos y productos, hacia las paredes del sistema.

La expresión empleada en este trabajo para el cálculo de este calor tuvo en cuenta únicamente la transferencia de calor por convección forzada, y es de la forma:

\[
Q_{\text{loss}} = h_r \left[A_p (T_g - T_p) + A_c (T_g - T_c) \right] + A_s (T_g - T_s)
\]

Donde:

- \(Q_{\text{loss}} \) es el calor transferido a las paredes,
- \(h_r \) es el coeficiente de transferencia de calor (W/m²K),
- \(A_p \), \(A_c \) y \(A_s \) son el área del pistón, de la culata y de la camisa, respectivamente (m²),
- \(T_g \) es la temperatura instantánea de los gases dentro del cilindro (K), y
- \(T_p, T_c \) y \(T_s \) son la temperatura del pistón, de la culata y de la camisa, respectivamente (K).

En lo que tiene que ver con las temperaturas superícieales se consideraron los valores medios aproximados propuestos por Payri et al. [2], según los cuales se aconseja tomar una temperatura de 400 K para el conjunto formado por la culata y las paredes del cilindro, y de 500 K para la cabeza del pistón.

En la referencia [9] se encuentra en detalle el procedimiento necesario para el cálculo del coeficiente de transmisión de calor convectivo, \(h_r \).

Submodelo de parámetros indicados

Al hablar de parámetros indicados se hace referencia a los fenómenos que tienen lugar dentro de la cámara de combustión del cilindro, que dan lugar a cantidades numéricas conocidas como parámetros indicados y se diferencian de los efectivos por no tener en cuenta las pérdidas mecánicas durante la transmisión mecánica al cigüeñal.

El software desarrollado permite visualizar la variación, durante el ciclo, de las cantidades numéricas más importantes de la combustión, como la presión media indicada (pmi), el trabajo indicado, la potencia indicada, el rendimiento indicado, y el consumo específico de combustible. La fórmula en que DIATERM obtiene estos parámetros es la siguiente [10]:

\[
W_i = \frac{\dot{\theta}}{V} \int pdV
\]

Trabajo indicado \((W_i) \) es la cantidad de trabajo que se produce durante el ciclo termodinámico. Se obtiene por integración directa de la información de presión \((p) \) y volumen \((V) \).

Presión media indicada \((pmi) \) es una presión tal que si actuara sobre el pistón durante la carrera de potencia completa, produciría la misma cantidad de trabajo que el producido durante el ciclo indicado:

\[
 pmi = \frac{W_i}{V_d}
\]

110 -------------- Universidad de Antioquia
Potencia indicada \((P_i) \) es la cantidad de trabajo en la unidad de tiempo que el pistón entrega al cigüeñal:

\[
P_i = \left(\frac{nW_i}{i} \right) z
\]

Donde \(n \) es el régimen de giro en r.p.s., \(i \) es el número de revoluciones por ciclo termodinámico y \(z \) el número de cilindros.

Rendimiento indicado \((\eta_i) \), mide qué tan buena es la transferencia de energía al pistón con relación a la que teóricamente entregaría el combustible:

\[
\eta_i = \frac{P_i}{mfH_c}
\]

Donde \(mf \) es el flujo máscico de combustible por ciclo que reacciona y \(H_c \) es el poder calorífico inferior del combustible.

Consumo específico de combustible indicado \((g_i) \) establece la cantidad de combustible que debe suministrarse a la cámara de combustión para producir una unidad de energía dentro del cilindro:

\[
g_i = \frac{mf}{3.600 P_i}
\]

Hasta aquí la descripción del modelo; a continuación se hace una breve descripción del programa DIATERM.

Descripción del programa

El software para análisis de combustión en MCIA ha sido diseñado de tal forma que por medio de pantallas y menús gráficos el usuario puede observar los resultados del proceso de combustión, biensea en forma gráfica o numérica.

El modelo descrito en el apartado anterior fue codificado en el lenguaje de programación gráfico LabView 5.1\(^\circ\) (véase figura 3), mientras que la subrutina de composición molar de los productos de combustión fue desarrollada en Matlab 5.2\(^\circ\), aprovechando la compatibilidad de ambos lenguajes y que el submodelo, por sí solo, es aplicable a cualquier otro tipo de proceso industrial en el que se lleve a cabo una reacción de combustión. El motivo para escoger estos lenguajes de programación se basó en la simplicidad que ofrecen para implementar procedimientos de adquisición de datos, necesarios al obtener y registrar las señales de entrada en el modelo.

Una vez se entra la información requerida por DIATERM, éste procede a acondicionar la señal

![Cálculo del trabajo indicado por ciclo (Kj)](image)

Figura 3 Segmento de código en LabView correspondiente al cálculo del trabajo indicado por ciclo
de presión, en cuanto a su puesta en fase con la posición angular [11], a referenciarla de forma que se tenga una medida absoluta [12] y a su conversión, desde unidades eléctricas a unidades de ingeniería, momento en el cual el modelo está en capacidad de calcular los diversos parámetros y gráficos, según las expresiones matemáticas antes desarrolladas.

La figura 4 muestra el diagrama de flujo principal de DIATERM.

Figura 4 Diagrama de flujo de la subrutina principal de DIATERM

Resultados

En el laboratorio de máquinas térmicas de la Universidad de Antioquia se está implementando la cadena de adquisición de datos que permitirá realizar el diagnóstico experimental de la combustión en motores; DIATERM ha sido diseñado con tal fin. Debido a que la instrumentación aún no está completamente a punto, se ha probado el programa con resultados obtenidos en el laboratorio de motores térmicos de la Universidad Politécnica de Madrid, sobre un motor IVECO de inyección directa, turboalimentado y de seis cilindros en línea.

A continuación, se presentan los resultados más importantes obtenidos con DIATERM. Los ensayos corresponden a un régimen de giro de 2.000 r.p.m. y se ha variado el grado de carga entre tres posiciones diferentes: 0% (en vacío), 60% y 100%. La figura 5 presenta la curva de presión en cámara de combustión contra el ángulo de giro del cigüeñal. Se observa incremento del 50% en la presión máxima de combustión (de cerca de 5.000 kPa en vacío a cerca de 11.000 kPa a plena carga). Igualmente se observa incremento del ángulo donde ocurre el pico de presión máxima, esto se explica por el incremento de presión y temperatura en la cámara de combustión a medida que incrementa el grado de carga en el motor.

La figura 6 muestra la variación de la curva de temperatura contra ángulo de giro del cigüeñal, para las mismas condiciones anteriores. Obsérvese el incremento en la temperatura desde el motor en vacío (temperatura máxima del orden de 1.200 K) hasta plena carga (cercana a los 2.100 K), valores éstos en los que es muy probable que ocurra el fenómeno de la disociación química que da lugar a la formación de NOx y CO, principalmente, y al enfriamiento de los gases quemados, ya que es un proceso endotérmico.

Las figuras 7 y 8 muestran la evolución del proceso de combustión en el motor diesel turboalimentado. En la figura 7 se observa la rapidez de liberación de calor o ritmo de quemado de masa
Figura 5 Variación de la presión durante el ciclo, a diferentes grados de carga y 2.000 r.p.m.

Figura 6 Variación de la temperatura durante el ciclo, a diferentes grados de carga y 2.000 r.p.m.
Figura 7 Fracción de calor liberado (kJ) durante el ciclo, a diferentes grados de carga y 2.000 r.p.m.

de combustible. En este caso, debe tenerse en cuenta que se han promediado diez curvas de presión consecutivas, con lo cual la variación en la rapidez de combustión obedece a la variación de presión y temperatura en la cámara de combustión, unos grados antes del punto muerto superior, y no a la dispersión cíclica inherente al proceso de combustión en estos motores.

La figura 8 muestra cómo, a medida que incrementa el grado de carga, incrementa la tasa de liberación de calor debido al incremento del combustible inyectado (el dosado es más elevado).

Conclusiones

- Se ha desarrollado y probado el programa *DIATERM* para el diagnóstico experimental de la combustión en motores, con lo cual se dota al laboratorio de máquinas térmicas de la Universidad de Antioquia con una herramienta que permite llevar a cabo actividades como estudios comparativos de combustibles alternativos, análisis y diagnóstico de la combustión en motores de combustión interna, prácticas de carácter académico, etc.

- Se ha demostrado que, con una instrumentación apropiada, de bajo costo y de fácil acceso en el mercado, se puede hacer un análisis preciso tanto del ciclo indicado como del proceso de combustión en MCIA. Los programas informáticos utilizados en el análisis de resultados son muy conocidos e, igualmente, de fácil acceso en el mercado.

- Las propiedades de los gases de combustión se han obtenido mediante un modelo de equilibrio químico, el cual es independiente del proceso de combustión como tal.

- El programa permite evaluar la factibilidad de usar combustibles alternativos, de tipo gaseoso o líquido, en el funcionamiento de un MCIA, para ser empleados en forma binaria o en dedicación exclusiva, siempre y cuando se disponga de las señales de presión en el cilindro.
Figura 8 Tasa de calor liberado (kJ/ grado) durante el ciclo, a diferentes grados de carga, y 2.000 r.p.m.

- El desarrollo de este modelo ha permitido profundizar en el conocimiento del proceso de combustión de los MCIA.

Referencias