El fenómeno del colapso de voltaje

Guillermo Vinasco*

Resumen
Durante muchos años los estudios de estabilidad de los sistemas de potencia han estado centrados en la estabilidad angular, buscando las medidas requeridas para mantener un sistema AC en sincronismo. Al tomar como criterio primordial de planificación lo anterior, los países desarrollados, debido al elevado progreso de su infraestructura eléctrica, se consideraban exentos de cualquier fenómeno que pudiera comprometer la continuidad del servicio o la seguridad de sus sistemas; la realidad demostró otra cosa, y los colapsos más grandes de los últimos veinte años se han presentado en países altamente desarrollados (Bélgica 1982, Florida 1982, Suecia 1983, Canadá 1986, Francia 1987, Tokio 1987, California 1996, etc.), como consecuencia de un fenómeno denominado colapso de voltaje.

--------- Palabras clave: estabilidad de voltaje, modelos de carga, compensación de la carga.

Abstract
During many years the stability studies for the power systems have beentrims in the angular stability, it looking for the required measures formaintain an AC system in synchronism. Taking like fundamental criterion fromplanning the previous thing, the developed countries due to the elevated development of their electrical infrastructure were considered completely safe that any phenomenon that could jeopardize the continuity of the service or the security of its systems; the reality demonstrated another thing, and the greatest collapses of last the 20 years, have appeared in countries highly developed (Belgium 1982, Florida USA 1982, Sweden 1983, Canada 1986, France 1987, Tokyo 1987, Californian 1996, etc., as a result of phenomenadominated voltage collapse.

--------- Key words: Voltage stability, load models, load compensation.
¿Qué es la estabilidad del voltaje?

La estabilidad del voltaje es la capacidad de un sistema para mantener niveles aceptables de voltaje en todos sus nodos, en condiciones normales o bajo contingencias; si después de alguna circunstancia operativa dicho control no se logra, ocurre un colapso del voltaje, que se caracteriza porque la magnitud de éste se deprime muy por debajo de los niveles considerados "aceptables", o incluso se anulan completamente. El control del voltaje está íntimamente ligado a la potencia reactiva y a la forma como ésta se intercambia entre sus fuentes y las cargas; si un sistema no puede garantizar este intercambio, sus voltajes se colapan.

Para ilustrar el fenómeno tómese como ejemplo el sistema de la figura 1, en el cual una fuente ideal de 230 kV alimenta una carga a través de una línea de 100 km.

![Figura 1 Diagrama unifilar del sistema AC bajo estudio](image)

En la figura 2 se observa lo que ocurre a medida que se incrementa la carga (con factor de potencia constante para el caso); en el bus1 la fuente permite control absoluto de la magnitud del voltaje (el cual se mantiene fijo en 1 p.u.), mientras que en el bus2 éste se reduce ostensiblemente, incluso sólo se puede llegar a un valor máximo de carga (Pmax = 315 MW a un Vcrit = 0,53 p.u.), y, a partir de allí, un incremento de la carga causa que el voltaje colapse, se deprime aún más y se reduce la potencia entregada a la carga. Se observa que, a partir del punto de colapso, no es posible mantener un control sobre el voltaje, a pesar de que se tiene una fuente con capacidad "infinita" de potencia activa y reactiva.

![Figura 2 Diagrama P vs V para el sistema de la figura 1](image)

En el voltaje crítico o más allá, es imposible la operación, ya que se trata de atender la carga con voltajes muy bajos y corrientes altas. También, para cualquier punto de operación inferior al voltaje crítico, un decremento de la potencia causa un decremento del voltaje, el cual, a su vez, produce una nueva reducción de la potencia, etc.

Curvas como la de la figura 2 se denominan curvas de "nariz", las cuales, a pesar de ser muy sencillas, ilustran perfectamente lo que puede suceder en un sistema real, en el cual la situación se agravaba ya que sus fuentes no son ideales. En un sistema real se puede presentar la interacción de generadores, controles, protecciones e, incluso, las acciones de los operadores, que afectan la forma como se da el movimiento desde un estado inicial hasta un punto de colapso de voltaje [1].

Contrario al fenómeno de inestabilidad angular, el cual ocurre en corto tiempo (usualmente un segundo o menos), la migración de un sistema de potencia hacia la inestabilidad de voltaje puede tomar desde unos segundos hasta varios minutos; debido a ello, el colapso de voltaje se suele categorizar como un fenómeno “cuasiestacionario”, en cuyo estudio se utilizan métodos del tipo de “flujos de carga”, en lugar de simulaciones dinámicas en el tiempo.

Mecanismos de la inestabilidad del voltaje

La situación ilustrada en el ejemplo anterior es sólo una forma de forzar un colapso de voltaje,
pero cualquier maniobra que debilite la red, incremente las magnitudes de las transferencias o reduzca el soporte de potencia reactiva puede migrar el punto de operación hacia otro donde sea inevitable el colapso, o el voltaje de operación sea inaceptable [2]; maniobras o eventos de este tipo podrían ser:

- Incremento de carga.
- Salida de circuitos.
- Salida de generadores.
- Pérdida de soportes de reactivos (compensaciones).

En cualquier evento se puede utilizar como metodología para el análisis, la construcción de las curvas “nariz” antes y después de aquel, y observar si el nuevo punto de operación es estable o no. Obsérvese la figura 3, en la cual se supone que se alimenta la misma carga del ejemplo 1, pero se usan ahora 2 líneas (curva 1) y ocurre una maniobra (apertura) en una de ellas, lo que obliga al sistema a buscar un nuevo punto de operación sobre la curva 2. Si la potencia inicial alimentada por los dos circuitos era superior a 315 MW, no es posible un punto estable de operación sobre la nueva curva de operación (curva 2); por tanto, el sistema colapsa por voltaje.

Influencia de la carga

En el control de voltaje es muy importante el comportamiento de la carga o, más específicamente, su sensibilidad a las variaciones de éste. En general, las cargas dependen de la frecuencia y del voltaje, pero en estos estudios se supone menor la influencia de la frecuencia sobre la carga. Son muy utilizadas, como formas de variación de la carga con el voltaje, las siguientes relaciones [1, 2]:

\[
P = P_0 \left(\frac{v}{v_0} \right)^\alpha \quad Q = Q_0 \left(\frac{v}{v_0} \right)^\beta
\]

Donde:

- \(P_0\) y \(Q_0\) son los valores de potencia en el voltaje \(v_0\).
- Los exponentes \(\alpha\) y \(\beta\) suelen variar entre 0 y 2, y de esta forma se obtienen los siguientes tipos básicos (véase figura 4):
 - Para \(\alpha = \beta = 0\) se tiene una carga de potencia constante
 - Para \(\alpha = \beta = 1\) se tiene una carga de corriente constante
 - Para \(\alpha = \beta = 2\) se tiene una carga de impedancia constante

![Figura 3](image)

Figura 3 Diagrama \(P\) vs \(V\) con dos líneas de alimentación

![Figura 4](image)

Figura 4 Variación de \(P\) y \(Q\) con el voltaje aplicado

Para una carga dada, \(\alpha\) y \(\beta\) pueden tomar cualquier valor, por lo que a veces se simplifica la representación de la carga real con una combinación de los tres tipos básicos, así:
\[P(\frac{v}{v_0}) = I_1 + I_2 \left(\frac{v}{v_0} \right)^1 + I_3 \left(\frac{v}{v_0} \right)^2 \]
\[Q(\frac{v}{v_0}) = m_1 + m_2 \left(\frac{v}{v_0} \right)^1 + m_3 \left(\frac{v}{v_0} \right)^2 \] (2)

Donde \(I_1 \) y \(m_1 \) son las porciones de la carga que serán simuladas como de potencia constante, \(I_2 \) y \(m_2 \) las porciones en corriente constante, y \(I_3 \) y \(m_3 \) las porciones en impedancia constante.

Para observar el efecto de la carga sobre el voltaje se retoma el ejemplo de las dos líneas, alimentando ahora una carga inicial de 450 MW, representada con 100\% de impedancia constante (\(\alpha = \beta = 2 \)) (véase figura 5). Teniendo en cuenta la característica de la carga, el punto inicial de operación sería de 0,88 p.u, 340 MW sobre la curva 1. Al ocurrir la salida de un circuito se observa que si para 450 MW ni para 340 MW hay un punto de operación “factible” sobre la curva 2, y el voltaje del sistema colapsaría; pero considerando la característica de la carga, es posible llegar a un nuevo punto de operación 0,75 p.u, 253 MW, sin que colapse el voltaje.

Figura 5 Diagrama \(P \) vs \(V \) que incluye la característica de la carga

Como evitar un colapso de voltaje

Tal como se dijo, el control de voltaje está íntimamente ligado con la potencia reactiva, por tanto es muy importante el factor de potencia de la carga. En la figura 6 se puede observar como el límite de estabilidad de voltaje se altera al mejorar el factor de potencia de la carga alimentada. Es importante, en el caso de requerir de compensación para lograr determinado punto de operación, evaluar las nuevas condiciones del sistema ante la pérdida de dicha compensación.

Figura 6 Efecto de la compensación de la carga

A medida que se aumenta la compensación de la carga también se incrementa el valor del voltaje crítico (\(v_{crit} \)) en el cual ocurre el colapso. Si el factor de compensación es alto, \(v_{crit} \) ocurre muy cerca al valor nominal o, incluso, por encima de éste; un operador puede observar este voltaje e inadvertidamente afirmar que el voltaje se encuentra “bien”, cuando en realidad está muy cerca de un punto de colapso.

Además de la compensación, la característica natural de la carga puede actuar como un “racionamiento automático”, mientras mayor sea la variación de éstas, más benéfico será su efecto sobre la estabilidad del voltaje; si esa variación no es suficiente para lograr la estabilidad, es obligatorio hacer un alivio intencional de carga.

Conclusiones

La disponibilidad local de recursos reactivos es el factor más importante para evaluar si es posible el control de voltaje en cualquier bus de una red de potencia.
La seguridad de una situación de operación está ligada con las características del nuevo punto de operación del sistema después de la contingencia. Si dicho punto es inseguro, se requieren medidas especiales que eviten un colapso de todo el sistema (alivio de carga, sobrecargar momentáneamente las fuentes de reactivos, etc.). En este trabajo no se trató, pero los cambiadores de taps son elementos que poseen un efecto perjudicial en la estabilidad de voltaje; por tanto, ante sospechas de colapso, se deben deshabilitar inmediatamente [2].

Durante mucho tiempo se pensó que la estabilidad de voltaje era un inconveniente exclusivo de los países en vía de desarrollo, pero la realidad demostró otra cosa. La "bonanza" económica que disfrutaron muchos países desarrollados durante la década de los 90, hizo que la demanda y las transacciones comerciales de energía crecieran en proporción mayor que la capacidad de las redes, las cuales tuvieron serios problemas para su expansión debido a las restricciones ambientales; además, el número de transacciones comerciales que requieren el uso de la red de transmisión incrementó notablemente. Todos esos factores han hecho renovar el interés por el estudio de la estabilidad de voltaje.

Las curvas $P-V$ o curvas de "nariz" son una metodología sencilla y práctica para entender y estudiar el fenómeno de colapso de voltaje, o las acciones para contrarrestarlo. Existen otras metodologías basadas en el estudio del jacobiano del sistema, las cuales son más difíciles de entender e interpretar que las curvas "nariz".

Referencias

