Determination and use of feasible operation region in flash distillation control

Keidy Luz Morales Rodelo, Hernán Darío Alvarez Zapata

Abstract


Flash distillation is essentially a single stage mass transfer operation. The flash distillation operation is used in this work to highlight the importance of identifying the zone where a system has an appropriate behavior. In this sense, this paper presents a discussion about the use of the feasible operation region (FOR) in the design of process control structures. For this reason, three control structures are presented. The first one is the traditional one, a PID multiloop control structure. The second structure uses the FOR graphically in order to determine a better operation point and improve the control response. Finally, the third structure uses the FOR numerically for guiding the controller using a modified control structure. The improvement of the closed loop operation of the flash using the last control structure is notorious when compared with the traditional control structure.




Keywords


Thermodynamic equilibrium; control strategy; separation processes; feasible operation

Full Text:

PDF

References


E. Ali, A. Ajbar, and K. Alhumaizi, “Robust control of industrial multi-stage flash desalination plants,” Desalination, vol. 114, no. 3, pp. 289 – 302, 1997. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0011916498000198

D. A. Muñoz, J. L. Diaz, S. Taborda, and H. Alvarez, “Hydrocyclone Phenomenological-Based Model and Feasible Operation Region,” International Journal of Mining, Materials, and Metallurgical Engineering (IJMMME), vol. 3, pp. 1–9, 2017.

S. Walas, Chemical process equipment selection and design. Newton, MA, USA: Butterworth-Heineman., 1998.

F. Blanchini and S. Miani, Set theoric methods in control. Boston, MA, USA: U. of Illinois at Urbana-Champaign., 2008.

J. Calderon, L. Gómez, and H. Alvarez, “Una aproximación a la cuantificación de la controlabilidad de estado,” Información Tecnológica, vol. 26, no. 1, pp. 123–133, 2015.

K. Hangos and I. Cameron, Process modelling and model analysis. San Diego, CA, USA: Academic press., 2001.

E. Hoyos, D. López, and H. Alvarez, “A phenomenologically based material flow model for friction stir welding,” Materials & Design, vol. 111, pp. 321 – 330, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0264127516311698

C. Zuluaga-Bedoya, M. Ruiz-Botero, M. Ospina-Alarcón, and J. Garcia-Tirado, “A dynamical model of an aeration plant for wastewater treatment using a phenomenological based semi-physical modeling methodology,” Computers and Chemical Engineering, vol. 117, pp. 420–432, 2018. [Online]. Available: https://doi.org/10.1016/j.compchemeng.2018.07.008

R. E. Treybal, Operaciones de Transferencia de Masa, second edi ed. México D.F.: McGraw - Hill, 1988.

K. Morales and H. Alvarez, “Flash distillation modeling and a multiloop control proposal,” in 2015 IEEE 2nd Colombian Conference on Automatic Control (CCAC), Oct 2015, pp. 1–8.

J. Seader, E. Henley, and D. Roper, Separation process principles. Chemical and biochemical operations. New York,NY, USA: John Wiley & Sons. Inc., 2011.

H. Fogler, Elements of chemical reaction engineering. New Delhi,India: Prentince Halll., 2004.

Mankenberk, “Dimensionado de válvulas reguladoras de presión,” Mankenberg, Industriearmeturen Industrial Valves, Tech. Rep., 2017. [Online]. Available: http: //www.mankenberg.de/es/77/UPLOAD/pdf/s33{_}5.pdf

C. R. Branan, “Separators / Accumulators,” in Rules of Thumb for Chemical Engineers, fourth edi ed., 2005, ch. Chapter 8, pp. 142–152.

P. C. Wankat, Separation Process Engineering. Includes Mass Transfer Analysis., pearson ed ed., Estados Unidos de América, 2012.

D. Muñoz de la Peña, D. R. Ramírez, E. F. Camacho, and T. Alamo, “Explicit solution of min-max MPC with additive uncertainties and quadratic criterion,” Syst. Control Lett., vol. 55, pp. 266–274, 2006.

C. A. Gómez-Pérez, L. M. Gómez, and H. Alvarez, “Reference trajectory design using state controllability for batch processes,” Industrial & Engineering Chemistry Research, vol. 54, no. 15, pp. 3893–3903, 2015. [Online]. Available: http://dx.doi.org/10.1021/ie504809x

F. Shinskey, Process control systems. Application, design and tuning. New York,NY, USA: McGraw Hill., 1996.

S. Revollar, M. Francisco, P. Vega, and R. Lamanna, “Stochastic optimization for the simultaneous synthesis and control system design of an activated sludge process,” Latin American applied research, vol. 40, no. 2, pp. 137–146, 2010.

P. S. Buckley, W. L. Luyben, and J. P. Shunta, Design of distillation column control systems, Research Triangle Park, Ed. United States of America: Instrument Society of America, 1985.

K. Morales and H. Alvarez, “Operation feasible region for flash distillation control and design,” in 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC), Oct 2017, pp. 1–6.




DOI: https://doi.org/10.17533/udea.redin.20190738 Abstract : 175 PDF : 130

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Esta publicación hace parte del Sistema de Revistas de la Universidad de Antioquia
¿Quieres aprender a usar el Open Journal system? Ingresa al Curso virtual
Este sistema es administrado por el Programa Integración de Tecnologías a la Docencia
Universidad de Antioquia
Powered by Public Knowledge Project