PNEUMATIZED ARTICULAR TUBERCLE AND DISCONTINUITY OF THE TEMPORAL BONE MANDIBULAR FOSSA: A COMPUTED TOMOGRAPHIC STUDY

Rosa Ferrer, Adalsa Hernández-Andara, Ana Isabel Ortega Pertuz

Abstract


Introduction: air cells in the articular tubercle and the discontinuity of the cortical mandibular fossa are sites of minimal resistance, favoring the extension of various pathologies, which should be differentiated from similar processes involving bone expansion/destruction. The aim of this study was to assess pneumatized articular tubercle (PAT) and discontinuity of the temporal bone’s mandibular fossa (DMF) through computed tomography (CT), focusing on its distribution by age, sex, and laterality. Methods: 200 CT studies including both temporomandibular joints (TMJ) were selected, recording age, sex, presence/absence of PAT and DMF and their laterality. Results: 19% of patients had some anatomical variants. PAT was seen in 15.5% of cases (n = 31), 21 females (67.74%) and 10 males (32.26%). DMF was seen in seven cases (3.5%), all in females.
51.62% of PAT were bilateral, and 85.71% of DMF were unilateral. Conclusions: the sample under study has a high prevalence of PAT. DMF should be considered in the evaluation of TMJ by CT, with this being the method of choice to assess bone structures and air spaces in temporal bone.


Full Text:

PDF

References


Orhan K, Delilbasi C, Cebesi I, Paksoy C. Prevalence and variations of pneumatized articular eminence: a study from Turkey. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005; 99(3): 349-54. DOI: https://doi.org/10.1016/j.tripleo.2004.08.005

Yavuz MS, Aras MH, Güngör H, Büyükkurt. Prevalence of the pneumatized articular eminence in the temporal bone. J Craniomaxillofac Surg. 2009; 37(3): 137-9. DOI: https://doi.org/10.1016/j.jcms.2009.01.006

Miloglu O, Yilmaz AB, Yildirim E, Akgul HM. Pneumatization of the articular eminence on cone-beam computed tomography: prevalence, characteristics and a review of the literature. Dentomaxillofac Radiol. 2011; 40(2): 110-4. DOI: https://doi.org/10.1259/dmfr/75842018

Zamaninaser A, Rashidipoor R, Mosavat F, Ahmadi A. Prevalence of zygomatic air cell defect: panoramic radiographic study of a selected Esfehanian population. Dent Res J (Isfahan). 2012; 9(Suppl 1): S63–8.

Ladeira DB, Barbosa GL, Nascimento MC, Cruz AD, Freitas DQ, Almeida SM. Prevalence and characteristics of pneumatization of the temporal bone evaluated by cone beam computed tomography. Int J Oral Maxillofac Surg. 2013; 42(6): 771-5. DOI: https://doi.org/10.1016/j.ijom.2012.12.001

Shamshad MP, Kamath G, Babshet M, Srikanth HS, Doddamani L. Prevalence of temporal bone pneumatization in relation to temporomandibular join: a computed tomographic study. J Stomatol Oral Maxillofac Surg. 2018; 119(2): 118-21. DOI: https://doi.org/10.1016/j.jormas.2017.11.016

Virapongse C, Sarwar M, Bhimani S, Sasaki C, Shapiro R. Computed tomography of temporal bone pneumatization: 1. Normal pattern and morphology. AJR Am J Roentgenol. 1985; 145(3): 473-81. DOI: https://doi.org/10.2214/ajr.145.3.473

Jadhav AB, Fellows D, Hand AR, Tadinada A, Lurie AG. Classification and volumetric analysis of temporal

¿ bone pneumatization using cone beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014; 117(3): 376-84. DOI: https://doi.org/10.1016/j.oooo.2013.12.398

Song SW, Jun BC, Kim H, Cho Y. Evaluation of temporal bone pneumatization with growth using 3D reconstructed image of computed tomography. Auris Nasus Larynx. 2017; 44(5): 522-7. DOI: https://doi.org/10.1016/j.anl.2016.11.006

Khojastepour L, Paknahad M, Abdalipur V, Paknahad M. Prevalence and characteristics of articular eminence pneumatization: a cone-beam computed tomographic study. J Maxillofac Oral Surg. 2018; 17(3): 339-44. DOI: https://doi.org/10.1007/s12663-017-1033-8

Tyndall DA, Matteson SR. Radiographic appearance and population distribution of the pneumatized articular eminence of the temporal bone. J Oral Maxillofac Surg. 1985; 43(7): 493-7.

Stoopler ET, Pinto A, Stanton DC, Mupparapu M, Sollecito TP. Extensive pneumatization of the temporal bone and articular eminence: an incidental finding in a patient with facial pain. Case report and review of literature. Quintessence Int. 2003; 34(3): 211-4.

Kaugars GE, Mercuri LG, Laskin DM. Pneumatization of the articular eminence of the temporal bone: prevalence, development, and surgical treatment. J Am Dent Assoc. 1986; 113(1): 55-7. DOI: https://doi.org/10.14219/jada.archive.1986.0130

Carter LC, Haller AD, Calamel AD, Pfaffenbach AC. Zygomatic air cell defect (ZACD). Prevalence and characteristics in a dental clinic outpatient population. Dentomaxillofac Radiol. 1999; 28(2): 116-22. DOI:

https://doi.org/10.1038/sj/dmfr/4600424

Hofmann T, Friedrich RE, Wedl JS, SchmelzleR. Pneumatization of the zygomatic arch on pantomography.

Mund Kiefer Gesichtschir. 2001; 5(3): 173-9. DOI: https://doi.org/10.1007/s100060100289

Orhan K, Delilbasi C, Orhan AI. Radiographic evaluation of pneumatized articular eminence in a group of Turkish children. Dentomaxillofac Radiol. 2006; 35(5): 365-70. DOI: https://doi.org/10.1259/dmfr/77401728

Srikanth HS, Patil K, MahimaVG. Zygomatic air cell defect: a panoramic radiographic study of a south Indian

population. Ind J Radiol Imaging. 2010; 20(2): 112-4. DOI: https://doi.org/10.4103/0971-3026.63052

Park YH, Lee SK, Park BH, Son HS, Choi M, Choi KS et al. Radiographic evaluation of the zygomatic air cell defect. Korean J Oral Maxillofac Radio. 2002; 32(4): 207-12.

Gadda R, Patil NA, Salvi R. Zygomatic air cell defect: prevalence and characteristics in dental outpatient population. J Contemp Dent. 2012; 2(3): 69-72.

Patil K, Mahima VG, Malleshi SN, Srikanth HS. Prevalence of zygomatic air cell defect in adults—a retrospective panoramic radiographic analysis. Eur J Radiol. 2012; 81(5): 957-9. DOI: https://doi.org/10.1016/j.ejrad.2011.01.081

Gupta D, Sheikh S, Pallagatti S, Aggarwal A, Goyal G, Chidanandappa RN, et al. Zygomatic air cell defect: a panoramic radiographic study of a North Indian population. J Investig Clin Dent. 2013; (4)4: 247-51. DOI: https://doi.org/10.1111/j.2041-1626.2012.00145.x

Srivathsa SH, Malleshi SN, Patil K, Guledgud MV. A retrospective study of panoramic radiographs for zygomatic air cell defect in children. Saudi J Oral Sci. 2014; 1(2): 79-82. DOI: https://doi.org/10.4103/1658-6816.138469

Kishore M, Panat SR, Kishore A, Aggarwal A, Upadhyay N, Agarwal N. Prevalence of zygomatic air cell defect using orthopantomogram. J Clin Diagn Res. 2015; 9(9): ZC09–11. DOI: https://doi.org/10.7860/JCDR/2015/9045.6437

Nagaraj T, Nigam H, Balraj L, Santosh HN, Ghouse N, Tagore S. A population-based retrospective study of zygomatic air cell defect in Bengaluru. J Med Radiol Pathol Surg. 2016; 3: 5-8.

Bronoosh P, Shakibafard A, Mokhtare MR, Munesi Rad T. Temporal bone pneumatisation: a computed tomography study of pneumatized articular tubercle. Clin Radiol. 2014: 69(2): 151–6. DOI: https://doi.org/10.1016/j.crad.2013.09.006

İlgüy M, Dölekoğlu S, Fişekçioğlu E, Ersan N, İlgüy D. Evaluation of pneumatization in the articular eminence and roof of the glenoid fossa with cone-beam computed tomography. Balkan Med J. 2015; 32(1): 64-8. DOI: https://doi.org/10.5152/balkanmedj.2015.15193

Honda K, Kawashima S, Kashima M, Sawada K, Shinoda K, Sugisaki M. Relationship between sex, age, and the minimum thickness of the roof of the glenoid fossa in normal temporomandibular joints. Clin Anat. 2005; 18(1): 23-6.

Al-Ekrish AA, Alorainy IA. Apparent discontinuity of the roof of the glenoid fossa on cone-beam computed

tomography images of an asymptomatic temporomandibular joint. Oral Radiol. 2016; 32(1): 61-5. DOI: http://dx.doi.org/10.1007/s11282-015-0207-7

Ahlqvist JB, Isberg AM. Bone demarcation of the temporomandibular joint. Validity of clinical assessment

of bone thickness by means of CT. Acta Radiol. 1998; 39(6): 649-55.

Ahlqvist JB, Isberg AM. Validity of computed tomography in imaging thin walls of the temporal bone. Dentomaxillofac Radiol. 1999; 28(1): 13-9. DOI: https://doi.org/10.1038/sj.dmfr.4600398

Eckerdal O, Ahlqvist J. Thin bony walls of the temporomandibular joint. Morphologic properties and

tomographic reproduction. Acta Radiol Diagn. 1979; 20(2): 385-92.

Betz BW, Wiener MD. Air in the temporomandibular joint fossa: CT sign of temporal bone fracture.

Radiology. 1991; 180(2): 463-6. DOI: https://doi.org/10.1148/radiology.180.2.2068313

Montaser A, Goyal M, Weiner MA. Air in temporomandibular joint: an indirect, specific CT sign of temporal bone fracture in the setting of head trauma. J Trauma. 2011; 70(4): E73. DOI: https://doi.org/10.1097/

TA.0b013e3181e9c14d

Ejima K, Schulze D, Stippig A, Matsumoto K, Rottke D, Honda K. Relationship between the thickness of the roof of glenoid fossa, condyle morphology and remaining teeth in asymptomatic European patients based on cone beam CT data sets. Dentomaxillofac Radiol. 2013; 42(3): 90929410. DOI: https://doi.org/10.1259/dmfr/90929410

Friedrich RE, Viezens L, Grzyska U. Pneumatization of the zygomatic process of temporal bone on computed tomograms. GMS Interdiscip Plast Reconstr Surg DGPW. 2016; 5: Doc16. DOI: https://doi.org/10.3205/iprs000095

Balzeau A, Grimaud-Hervé D. Cranial base morphology and temporal bone pneumatization in Asian Homo erectus. J Hum Evol 2006; 51(4): 350-9. DOI: https://doi.org/10.1016/j.jhevol.2006.04.007




DOI: https://doi.org/10.17533/udea.rfo.v31n1-2a3 Abstract : 106 PDF : 36

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Comments on this article

View all comments


Esta publicación hace parte del Sistema de Revistas de la Universidad de Antioquia
¿Quieres aprender a usar el Open Journal system? Ingresa al Curso virtual
Este sistema es administrado por el Programa Integración de Tecnologías a la Docencia
Universidad de Antioquia
Powered by Public Knowledge Project