ARTICULOS ORIGINALES

Frecuencia de lechones de bajo peso al nacimiento y su relación con la sobrevivencia a los ocho días, en seis granjas suinas comerciales de Antioquia, Colombia.

JL Velásquez. MV, MS; OS Morales, MV; VL Ramírez, MV; F Botero, MV, MS; JG Maldonado, MVZ, MS.

Grupo de Teriogenología, Facultad de Medicina Veterinaria y de Zootecnia y grupo Biogénesis, Facultad de Medicina, Universidad de Antioquia. AA 1226, Medellín, Colombia.

(Recibido: mayo 5, 98; aceptado: junio 23, 98)

Resumen

De 1802 lechones nacidos a término de 6 granjas comerciales (n=160 partos) del Departamento de Antioquia, Colombia, y bajo el criterio de bajo peso al nacimiento (BPN) menor de 1000 gr., se analizó el peso individual al nacimiento y a los 8 días de vida y su asociación con: tamaño de camada, tipo de monta, número de partos, condición corporal de la cerda, granja, orden de parto, sexo del lechón, mortalidad, y ganancia diaria; además, la histología y el peso relativo de hígado, tiroides y glándulas adrenales de lechones nacidos vivos y muertos. Los datos se analizaron por análisis de varianza multifactorial y por regresión simple. Se obtuvieron 1663 nacidos vivos (92.14%), 59 momias (3.27%), y 80 nacidos muertos (4.59 %). Los lechones de BPN representaron el 40% de los nacidos muertos y el 16.18% de los nacidos vivos (P<0.01). El promedio de peso de los lechones de BPN fue de 836 ± 14 gr y el de los lechones normales 1420 ± 7 gr (P<0.01). Los lechones con peso menor de 800 gr. tendieron a presentar mayor mortalidad al nacimiento (P= 0.052), y tuvieron una significativa reducción de la ganancia diaria de peso y mayor mortalidad a los 8 días de edad (P<0.01). La condición de BPN no dependió del sexo ni del orden de nacimiento (P<0.05), pero sí de la granja, el número de partos de la cerda, la condición corporal al parto y las montas homospermicas (P<0.05). Las glándulas adrenales tendieron a ser mas livianas en lechones de BPN que en lechones normales (P=0.09). Además, se observaron diferencias histológicas entre las adrenales y tiroides de lechones normales y de BPN. Se requieren mas estudios de las causas de BPN y observar las asociaciones entre lechones de BPN, el peso relativo de sus órganos y su histología. Las montas heterospermicas se practican con el fin de aumentar el tamaño de la camada en las granjas de tipo comercial. Nuestros resultados sugieren que esta práctica disminuye el peso individual de los lechones al nacimiento (p<0.01).

Palabras clave: adrenales, bajo peso, hígado, lechones, montas cruzadas, tiroides.

Introducción

La industria porcina ha invertido grandes recursos en la investigación y desarrollo de sistemas de producción para aumentar la producción de carne magra y el número de lechones por camada (24), logrando altos volúmenes de producción con lo que aumenta la presencia de lechones de bajo peso al nacimiento (BPN). Los cerdos de BPN representan un grave problema en la estandarización de los procesos de producción porque toman más días al mercado y su causalidad permanece aún desconocida (23). El atete es una práctica que busca incrementar el nivel de sobrevivencia de los lechones y pretende homogeneizar el número y tamaño de lechones lactantes por camada (25). Los animales de bajo peso al nacimiento toman más tiempo para mamar por primera vez después de nacer, son más susceptibles de enfermarse debido a la alta superficie corporal por peso (26), e ingieren menos calostro y leche (27). La presencia de lechones de BPN ha sido objeto de estudio en numerosas investigaciones y su causa ha sido sustentada desde la presencia de óvulos asincrónicos (2, 3), irregular desarrollo embrionario y fetal (2,16), anormalidades del desarrollo placentario (14) y otras anormalidades de tipo metabólico (7, 9).

Asimismo, se ha encontrado que la tasa de mortalidad de los lechones de BPN en lactancia es alrededor del 70% (28). Los lechones sobrevivientes se comportan como reservorios de enfer-
medidades infecciosas en las granjas y su presencia genera pérdidas económicas importantes, por su impacto negativo en la salud de su cohorte de población y su alta mortalidad, porque tienen menor capacidad de consumo de calostro (27). El calostro estimula en los lechones neonatos la síntesis proteica en órganos viscerales y en músculo esquelético (26) y además de anticuerpos, aporta linfocitos maternos que pasan la barrera gastrointestinal, migran al organismo del neonato y al parecer ejercen efectos inmunomoduladores (29). Esto se ha comprobado en ratones deficientes en células B con la inyección de inmunoglobulinas a hembras gestantes o a sus neonatos, lo cual previene la muerte y el atraso en el desarrollo neonatal (12).

Los lechones BPN son hipotímicos (6), tienen menor peso relativo de glándulas adrenales (7, 30) e inmadurez hepática (9) y se presume que tienen menor número de células por fibra muscular (15). De igual manera, tienen un menor número de receptores de T3 por fibra muscular (6) y sufren una clara condición hipoglucémica (11). De otro lado, se ha encontrado una asociación positiva entre el peso al nacer y la ganancia de peso y sobrevivencia hasta edades avanzadas (23, 24).

Se estima que en Colombia hay 2.635.000 cerdos (Anuario, 1995, FAO), lo cual implica la ocurrencia considerable de un número de lechones de BPN. Tanto en Colombia como en el mundo, las granjas porcinas se enfrentan diariamente a dos opciones de decisión sobre los lechones BPN: 1) practicar la eutanasia a los lechones justo después del nacimiento; 2) dejarlos permanecer con su camada o en otra camada en donde sean atendidos, con todas las implicaciones sanitarias de esta medida. Los lechones BPN son vendidos a destiempo en ceba, lo que genera un conflicto de costos y presupuesto de producción. El problema también involucra a las mataderos porque el costo de procesamiento de un cerdo de talla menor es más alto e implica mayores problemas, porque su talla no se ajusta a los estándares de los equipos de procesamiento.

El desconocimiento de la frecuencia de presentación de lechones BPN y de su causalidad en la porcicultura colombiana, deja sin fundamento cualquier decisión que se tome al respecto en las granjas. Por tanto, el objetivo del presente estudio fue determinar la frecuencia de los lechones BPN en la porcicultura tecnificada de Antioquia, y obtener información sobre sus causas para la posterior implementación de estrategias para corregir este problema.

Materiales y métodos

El trabajo experimental se realizó en 6 granjas porcinas de cría tipo comercial, ubicadas en los municipios de Amaga, Barbosa, Caldas, Envigado y La ceja, dentro de un radio de 60 km. alrededor de la ciudad de Medellín.

Selección de las granjas: las seis granjas seleccionadas fueron explotaciones de tipo comercial con un número mínimo de 200 cerdas de cría en uso del programa PigChamp. Una vez se conoció el inventario de cría, se procesó a tomar una muestra equivalente al 10% de partos semanales de la granja. Estos datos se recogieron durante un lapso de 4 a 5 semanas, haciendo presencia en los días de mayor ocurrencia de partos, de acuerdo con la programación estimada de nacimientos. A cada cerda próxima a parir se le elaboró un registro individual donde se consignaron los siguientes datos: 1) identificación de la granja, 2) identificación de la cerda, 3) condición corporal al parto, 4) identificación del verraco, 5) montas cruzadas, y 6) número de partos de la cerda.

Medición de los parámetros de la camada al nacer. Iniciado el parto natural o inducido con prostaglandinas, se atendió a cada lechón nacido según la rutina de cada granja, se hizo limpieza de las membranas y restos líquidos de la placenta, se identificó con tinta indeleble cada uno de los lechones de acuerdo con su orden de nacimiento, se envolvieron individualmente en una bolsa de tela con cierre de cordón, en donde se puso el lechón y se cerró para evitar su movimiento y facilitar el proceso de pesado. Antes de poner a los lechones en contacto con la madre se pesaron individualmente en balanza electrónica con un margen de error de 2 gr. (HAN HS-6000W), luego se identificaron con el sistema de muestras, marcando el número consecutivo de nacimiento en la oreja izquierda y el número consecutivo de la camada en la oreja derecha. A cada camada se le hicieron los siguientes registros: orden de nacimiento, sexo del lechón, lechón vivo, lechón muerto, momia, peso individual, y características físicas para descartar la presencia de malformaciones. Luego se hizo un seguimiento durante los primeros ocho días de vida, para registrar el comportamiento de los lechones y su sobrevivencia durante este lapso.
Evaluación productiva a los ocho días de edad. A los 8 días de vida se realizó un pesaje individual de cada lechón utilizando para ello el mismo instrumento de medida que se utilizó para el peso al nacimiento; también se registro la mortalidad de los lechones en la primera semana de vida.

Toma de muestras de adrenales, hígado y tiroides. Debido a la poca disponibilidad de lechones para sacrificio, se optó por tomar muestras de los lechones que nacían con poca viabilidad (asfixia) y se logró recolectar un total de 22 muestras en las seis granjas: 11 lechones con peso inferior a 1000 gr y 11 lechones con peso superior a 1200 gr. La técnica de la necropsia fue hecha de acuerdo con el procedimiento de Andrews y colaboradores, 1986 (1). Durante el procedimiento se disecó el hígado, la tiroides y las adrenales y se pesaron directamente, en el caso del hígado, o se embebieron en formalina para su posterior pesaje y estudio histopatológico.

Peso de las glándulas. El hígado fue pesado en el momento de la necropsia utilizando la misma balanza electrónica en la que se registró el peso individual al nacimiento. Los demás órganos se rotularon con la identificación y peso individual del lechón, se embebieron y transportaron en formalina al 10% y se pesaron en balanza de precisión en el laboratorio de la Secretaría de Agricultura de Antioquia.

Procesamiento de muestras para estudio histopatológico. Todas las muestras fueron enviadas al laboratorio de histopatología de la Facultad de Medicina Veterinaria y de Zootecnia de la Universidad de Antioquia, donde se sometieron al procedimiento de rutina para procesar muestras histopatológicas mediante induración en parafina, corte con micrótomo y tinción de Hematoxilina - Eosina. En la evaluación histológica de los órganos se hizo énfasis en las siguientes características microscópicas: 1) Glándula adrenal, diferenciación de las capas corticales, relación corteza-medula, continuidad de la corteza, límite corticomedular, hemorragia y congestión; 2) Hígado, límite lobulillar, acúmulos linfocitarios, vacuolización, hemorragia y congestión; y 3) Glándula tiroideas, epitelio aplanado, formación de coloide, variabilidad en tamaño de foliculos, desarrollo de la glándula.

Análisis estadístico.

Los resultados obtenidos para el peso al nacimiento, condición BPN, peso a los ocho días, ganancia de peso, mortalidad al nacimiento, mortalidad a los ocho días, se evaluaron por análisis de varianza multifactorial, de acuerdo con el modelo de medias mínimas cuadráticas para grupos no apareados propuesto por Harvey, 1975 (13); en tanto que el peso de los órganos, la relación entre el peso visceral y peso corporal y entre el peso al nacimiento y la mortalidad y ganancia de peso a los 8 días, se evaluaron por regresión simple. Los hallazgos microscópicos y la tasa de mortalidad se evaluaron por pruebas de Mantel-Haenszel, o Exacta de Fisher (Statgraphic Plus 3.0).

Categorización de variables. Los siguientes factores se evaluaron como efectos principales en el modelo para cada uno de los parámetros evaluados:

1. Para el peso al nacimiento, se evaluaron los siguientes factores: la granja, número de montas cruzadas, condición corporal de la cerda, número de partos en la vida reproductiva de la cerda. Para obtener los valores promedio entre los BPN y los de peso normal, el peso individual se categorizó en dos niveles: 1) lechones de menos de 1000 gr; y 2) lechones de más de 1000 gr. Por consiguiente, el peso al nacimiento se evaluó siempre incluyendo la condición anterior como efecto principal en el modelo estadístico, para poder establecer las efectos del punto de corte preestablecido de 1000 gr.

2. Para el peso al nacer se evaluaron los siguientes factores como efectos principales en el modelo: la granja, el número de montas cruzadas, la condición corporal de la cerda, el número de partos de la cerda y el sexo del lechón. Para el peso de los lechones a los ocho días, se tuvieron en cuenta como fuente de variación los siguientes factores: el peso al nacer, la granja, el sexo del lechón y el número de partos de la cerda.

3. Para la ganancia de peso se tuvieron en cuenta como fuente de variación los siguientes factores: el peso al nacer, la granja, el número de partos de la cerda y el sexo de lechón.

4. Para el peso de los órganos se tuvo como fuente de variación el peso al nacer. Para la relación entre el peso visceral y el peso corporal la fuente de variación fue el peso al nacer.

5. Para evaluar las características microscópicas se incluyeron como fuente de variación el peso del órgano y el peso al nacer.

6. La condición corporal de la cerda después del parto se categorizó en: Clase 1, 2.0 a 2.5; Clase 2, 3.0; y Clase 3, 3.5- 4.0.
Resultados

El estudio se efectuó entre los meses de mayo y octubre de 1997. En las seis granjas evaluadas se analizaron 160 camadas que produjeron 1802 lechones nacidos totales para un promedio de 11.16 lechones nacidos totales por camada y de 10.37 lechones nacidos vivos; por su parte, se halló 4% de lechones nacidos muertos y 2.5% de momias (Tabla 1).

Tamaño y peso de la camada al nacer. El número de lechones nacidos totales, nacidos vivos, el porcentaje de nacidos muertos o de momias, no presentaron diferencias estadísticas significativas (P>0.05) entre las granjas (Tabla 1).

El peso al nacimiento se vio afectado significativamente por la granja (P<0.05) y la condición BPN (P<0.01), mientras que el sexo no tuvo efecto (P>0.05) significativo (Tabla 2). El 16.18% de los lechones nacidos vivos y el 40% de los lechones nacidos muertos pesaron menos de 1000 gr al nacimiento, con diferencia estadística significativa (P<0.01). Los lechones nacidos muertos tuvieron un peso significativamente menor (1012 ± 26 gr) que los lechones nacidos vivos (1129 ± 8 gr) (P<0.01). Los resultados se presentan en la tabla 3.

La condición corporal de la cerda al momento del parto afectó significativamente el peso al nacimiento (P< 0.05): las hembras con una condición corporal de 2.0 y 2.5 parieron los lechones de mayor peso (1.143 gr) comparadas con las cerdas que parieron con una condición corporal de 3.0 (1.107 gr) (Tabla 4).

Tabla 1. Tamaño de la camada al nacimiento en seis granjas suinas comerciales en Antioquia. *

<table>
<thead>
<tr>
<th>Granja</th>
<th>Camadas</th>
<th>NT</th>
<th>NV</th>
<th>Natimortos (%)</th>
<th>Momias (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>11.6 ± 0.6</td>
<td>10.7 ± 0.6</td>
<td>3.6 ± 1.6</td>
<td>3.9 ± 1.7</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>11.3 ± 0.6</td>
<td>10.3 ± 0.6</td>
<td>4.2 ± 1.5</td>
<td>4.2 ± 1.6</td>
</tr>
<tr>
<td>3</td>
<td>23</td>
<td>12.0 ± 0.7</td>
<td>10.5 ± 0.7</td>
<td>7.5 ± 1.7</td>
<td>3.2 ± 1.7</td>
</tr>
<tr>
<td>4</td>
<td>28</td>
<td>10.1 ± 0.7</td>
<td>9.3 ± 0.7</td>
<td>3.3 ± 1.7</td>
<td>4.2 ± 1.8</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>10.7 ± 0.7</td>
<td>10.3 ± 0.7</td>
<td>4.2 ± 1.8</td>
<td>0.05 ± 1.9</td>
</tr>
<tr>
<td>6</td>
<td>23</td>
<td>11.2 ± 0.7</td>
<td>11.0 ± 0.7</td>
<td>1.4 ± 1.8</td>
<td>0.04 ± 1.9</td>
</tr>
<tr>
<td>Total</td>
<td>160</td>
<td>11.16 ± 0.4</td>
<td>10.37 ± 0.4</td>
<td>4.01 ± 1</td>
<td>2.5 ± 1.05</td>
</tr>
</tbody>
</table>

NT: nacidos totales; NV: nacidos vivos.

* Medias mínimas cuadráticas ± error estándar.

a: P<0.05

El orden de parto tuvo un efecto significativo en el peso al nacer (p<0.01): en primer lugar, las cerdas de 2, 3, 4, 7 y 9 partos parieron los lechones de mayor peso, con pesos desde 1113 hasta 1171 gr.; en un grupo intermedio de peso se ubicaron los lechones de las cerdas de 1, 5, 6 y 8 partos, con pesos desde 1091 hasta 1096 gr.; y un último grupo estuvo conformado por las cerdas de 10 partos en adelante, con pesos entre 964 y 1056 gr. (Tabla 5).

Las montas cruzadas tuvieron un efecto significativo en el peso al nacer: las cerdas que tuvieron una o dos montas fértiles con un solo macho parieron los lechones de mayor peso (1192 a 1216 gr); en un segundo grupo se ubicaron las cerdas que tuvieron 3 montas con un solo macho y dos montas con dos machos (1121 a 1150 gr); un último grupo lo conformaron las hembras que tuvieron 3 montas con 2 ó con 3 machos (1097 a 1103 gr) (Tabla 6). Posteriormente se clasificaron las montas como: homospérmicas (una o varias montas con el mismo macho); y heterospérmicas (dos o más montas con diferentes machos cada una) y se observó que los cerdas que tuvieron montas homospérmicas
parieron lechones significativamente más pesados (1150 ± 12 gr.) que las cerdas que tuvieron montas heterospérmicas (1106 ± 10 gr.) lo cual confirmó el efecto negativo de las montas cruzadas en el peso de los lechones al nacimiento.

<table>
<thead>
<tr>
<th>Granja</th>
<th>Tipo de lechón</th>
<th>n</th>
<th>Peso al nacer (gr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>normal</td>
<td>272</td>
<td>1386 ± 14</td>
</tr>
<tr>
<td></td>
<td>BPN</td>
<td>63</td>
<td>824 ± 29</td>
</tr>
<tr>
<td>2</td>
<td>normal</td>
<td>324</td>
<td>1472 ± 13</td>
</tr>
<tr>
<td></td>
<td>BPN</td>
<td>73</td>
<td>865 ± 27</td>
</tr>
<tr>
<td>3</td>
<td>normal</td>
<td>223</td>
<td>1425 ± 17</td>
</tr>
<tr>
<td></td>
<td>BPN</td>
<td>41</td>
<td>819 ± 37</td>
</tr>
<tr>
<td>4</td>
<td>normal</td>
<td>254</td>
<td>1502 ± 15</td>
</tr>
<tr>
<td></td>
<td>BPN</td>
<td>28</td>
<td>789 ± 43</td>
</tr>
<tr>
<td>5</td>
<td>normal</td>
<td>169</td>
<td>1387 ± 18</td>
</tr>
<tr>
<td></td>
<td>BPN</td>
<td>41</td>
<td>873 ± 36</td>
</tr>
<tr>
<td>6</td>
<td>normal</td>
<td>200</td>
<td>1356 ± 17</td>
</tr>
<tr>
<td></td>
<td>BPN</td>
<td>54</td>
<td>845 ± 17</td>
</tr>
<tr>
<td>Total</td>
<td>normal</td>
<td>1442</td>
<td>1420 ± 8</td>
</tr>
<tr>
<td></td>
<td>BPN</td>
<td>300</td>
<td>836 ± 14</td>
</tr>
</tbody>
</table>

BPN: <1000 gr.; normal >1001 gr.
a, b : P<0.01
* Medias mínimas cuadráticas ± error estándar.

Tabla 3. Relación entre los lechones BPN y la viabilidad al nacimiento.

<table>
<thead>
<tr>
<th>Condición BPN</th>
<th>Viabilidad</th>
<th>n</th>
<th>Peso* (gr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPN</td>
<td>vivo</td>
<td>267</td>
<td>843a ± 14</td>
</tr>
<tr>
<td></td>
<td>muerto</td>
<td>32</td>
<td>688a ± 41</td>
</tr>
<tr>
<td>normal</td>
<td>vivo</td>
<td>1394</td>
<td>1416b ± 6</td>
</tr>
<tr>
<td></td>
<td>muerto</td>
<td>48</td>
<td>1338b ± 34</td>
</tr>
<tr>
<td>Total</td>
<td>vivo</td>
<td>1663</td>
<td>1129a ± 8</td>
</tr>
<tr>
<td></td>
<td>muerto</td>
<td>80</td>
<td>1012b ± 26</td>
</tr>
</tbody>
</table>

a : P<0.01
b: P<0.05
* Medias mínimas cuadráticas ± error estándar.
dición BPN y las montas homospérmicas (P<0.01). Los lechones con un peso menor de 1000 gr al nacimiento ganaron significativamente (P<0.01) mas peso a los 8 días de edad que los lechones que nacieron con un peso menor de 1000 gr (ver tabla 8).

Para establecer si había asociación entre el peso al nacimiento y la ganancia de peso y sobrevivencia a los ocho días, se hizo una categorización del peso al nacer desde el valor mínimo obtenido hasta completar grupos comprendidos entre éste y 800 gr; entre 801 y 1000 gr; y así sucesivamente. El análisis de regresión simple indicó que la probabilidad de sobrevivencia a los ocho días disminuyó significativamente cuando los lechones pesaron menos de 800 gr al nacimiento (P< 0.01). De otro lado, se observó que las hembras nacidas con menos de 1000 gr de peso ganaron significativamente más peso a los ocho días que los machos que nacieron con peso menor de 1000 gr (P< 0.05).

La mortalidad a los ocho días fue significativamente mayor en los lechones BPN que en los lechones que pesaron más de 1000 gr (P< 0.01). El efecto granja también afectó significativamente (P<0.01) la mortalidad a los ocho días.

<table>
<thead>
<tr>
<th>Tabla 4. Asociación entre la condición corporal y el BPN*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condición corporal</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>2 - 2.5</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>3.5</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

a, b : P<0.05

* Medias mínimas cuadráticas ± error estándar.

Peso de los órganos

Tan pronto como se hizo la necropsia se registró el peso del hígado en fresco, en una balanza electrónica con un margen de error de 2 gr. Las glándulas adrenales y tiroides se induraron en formalina, se llevaron al laboratorio y se pesaron en balanza de precisión.

Hígado. El peso relativo del hígado no presentó diferencias estadísticas significativas (P>0.05) entre los lechones BPN (18.5 ± 5 gr) y los lechones de peso normal (46 ± 5 gr).

Glándulas adrenales. El peso relativo de las glándulas adrenales mostró tendencia (P=0.052) a ser menor en los lechones de bajo peso al nacer (0.11 ± 0.022%) que en los lechones normales (0.24 ± 0.02%).

Glándula tiroides. El peso relativo de la tiroides no presentó diferencias estadísticas significativas (P>0.05) entre los lechones de bajo peso (0.12 ± 0.01%) y los lechones normales (0.31 ± 0.01%).

El análisis de regresión simple entre el peso de los órganos y el peso al nacimiento indicó que el peso de los órganos fue directamente proporcional al peso al nacimiento, en ambos grupos de lechones (P< 0.01). No obstante, al comparar el porcentaje del peso del órgano evaluado con respecto al peso total del lechón (peso relativo), se encontró una tendencia de los lechones BPN a tener glándulas adrenales más livianas que los lechones de peso normal (P= 0.052).

Análisis microscópico

Hígado. En el análisis microscópico del hígado se hicieron comparaciones entre los órganos
Tabla 5. Efecto del orden de parto sobre el peso de los lechones al nacimiento.*

<table>
<thead>
<tr>
<th>Orden de parto</th>
<th>Total (n)</th>
<th>Peso (gr)</th>
<th>BPN (n)</th>
<th>Peso (gr)</th>
<th>Normal (n)</th>
<th>Peso (gr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>a</sup></td>
<td>191</td>
<td>1093 ± 22</td>
<td>35</td>
<td>852 ± 39</td>
<td>156</td>
<td>1334 ± 18</td>
</tr>
<tr>
<td>2<sup>b</sup></td>
<td>239</td>
<td>1171 ± 26</td>
<td>21</td>
<td>871 ± 50</td>
<td>218</td>
<td>1470 ± 16</td>
</tr>
<tr>
<td>3<sup>b</sup></td>
<td>310</td>
<td>1128 ± 16</td>
<td>65</td>
<td>837 ± 29</td>
<td>245</td>
<td>1419 ± 15</td>
</tr>
<tr>
<td>4<sup>b</sup></td>
<td>260</td>
<td>1150 ± 21</td>
<td>33</td>
<td>864 ± 40</td>
<td>227</td>
<td>1435 ± 15</td>
</tr>
<tr>
<td>5<sup>a</sup></td>
<td>140</td>
<td>1096 ± 23</td>
<td>34</td>
<td>799 ± 39</td>
<td>106</td>
<td>1394 ± 22</td>
</tr>
<tr>
<td>6<sup>a</sup></td>
<td>212</td>
<td>1091 ± 20</td>
<td>43</td>
<td>806 ± 35</td>
<td>169</td>
<td>1377 ± 18</td>
</tr>
<tr>
<td>7<sup>b</sup></td>
<td>109</td>
<td>1123 ± 48</td>
<td>6</td>
<td>735 ± 94</td>
<td>103</td>
<td>1510 ± 23</td>
</tr>
<tr>
<td>8<sup>a</sup></td>
<td>66</td>
<td>1113 ± 41</td>
<td>9</td>
<td>802 ± 77</td>
<td>57</td>
<td>1424 ± 30</td>
</tr>
<tr>
<td>9<sup>b</sup></td>
<td>114</td>
<td>1141 ± 26</td>
<td>24</td>
<td>889 ± 47</td>
<td>90</td>
<td>1393 ± 24</td>
</tr>
<tr>
<td>10<sup>c</sup></td>
<td>57</td>
<td>1016 ± 34</td>
<td>16</td>
<td>690 ± 58</td>
<td>41</td>
<td>1342 ± 36</td>
</tr>
<tr>
<td>11<sup>c</sup></td>
<td>11</td>
<td>964 ± 90</td>
<td>2</td>
<td>574 ± 163</td>
<td>9</td>
<td>1354 ± 77</td>
</tr>
<tr>
<td>12<sup>c</sup></td>
<td>25</td>
<td>1046 ± 48</td>
<td>9</td>
<td>818 ± 77</td>
<td>16</td>
<td>1275 ± 58</td>
</tr>
<tr>
<td>14<sup>c</sup></td>
<td>9</td>
<td>1056 ± 81</td>
<td>3</td>
<td>869 ± 33</td>
<td>6</td>
<td>1242 ± 94</td>
</tr>
</tbody>
</table>

* Medias mínimas cuadráticas (± error estándar)

a, b, c: números con diferente superíndice implican diferencia estadística significativa (P<0.01).

Tabla 6. Efecto de las montas cruzadas en el BPN*

<table>
<thead>
<tr>
<th>Montas cruzadas (servicios/machos)</th>
<th>BPN (n)</th>
<th>Peso (gr)</th>
<th>Normal (n)</th>
<th>Peso (gr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Monta, 1 macho<sup>a</sup></td>
<td>6</td>
<td>911 ± 94</td>
<td>37</td>
<td>1522 ± 38</td>
</tr>
<tr>
<td>2 Monta, 1 macho<sup>a</sup></td>
<td>19</td>
<td>907 ± 53</td>
<td>92</td>
<td>1477 ± 24</td>
</tr>
<tr>
<td>3 Monta, 1 macho<sup>b</sup></td>
<td>103</td>
<td>811 ± 23</td>
<td>568</td>
<td>1432 ± 10</td>
</tr>
<tr>
<td>2 Monta, 2 machos<sup>b</sup></td>
<td>3</td>
<td>878 ± 134</td>
<td>20</td>
<td>1420 ± 52</td>
</tr>
<tr>
<td>3 Monta, 2 machos<sup>c</sup></td>
<td>124</td>
<td>839 ± 21</td>
<td>420</td>
<td>1356 ± 11</td>
</tr>
<tr>
<td>3 Monta, 3 machos<sup>c</sup></td>
<td>45</td>
<td>780 ± 34</td>
<td>306</td>
<td>1426 ± 13</td>
</tr>
</tbody>
</table>

* Medias mínimas cuadráticas (± error estándar)
** La muestra incluye lechones sin discriminar (normal y BPN).

Nota: Obsérvese como se reduce el peso al nacimiento a medida que aumentan los machos por primer servicio.

a, b, c: números con diferente superíndice implican diferencia estadística significativa (P<0.05).
de ambos grupos de animales haciendo énfasis en los siguientes hallazgos: dilatación de venas portales, ausencia del límite lobulillar, acúmulos linfocitarios, acúmulos de polimorfonucleares, vacuolización, congestión, hemorragia, y hemosiderina. Ninguno de los parámetros evaluados presentó diferencia significativa entre los lechones de bajo peso y los lechones normales (P > 0.05).

Tiroides. En el análisis microscópico de la glándula tiroides se tuvieron en cuenta los siguientes hallazgos: epitelio aplanado, formación de coloide, desarrollo normal, congestión, hemorragia, fólicos de tamaño variable, buen desarrollo, no formación de coloide, baja formación de coloide. Los lechones de BPN presentaron significativamente menor epitelio aplanado (P < 0.01) y menor desarrollo normal de la glándula (P < 0.05, prueba de Mantel - Haenszel; P = 0.08 prueba de Yates) que los lechones de peso normal.

Glándulas adrenales. En el análisis de la glándula adrenal se evaluaron los siguientes hallazgos: diferenciación de la corteza, presencia de médula gruesa, corteza intermitente, congestión, límite de corteza bien diferenciado, corteza delgada, corteza gruesa y cambios vacuolares degenerativos. Los lechones BPN presentaron significativamente una mayor cantidad de corteza intermitente (P < 0.01) y significativamente mas delgada (P < 0.05) que los lechones normales.

Tabla 7. Peso a los ocho días de edad en 6 granjas suinas de Antioquia*

<table>
<thead>
<tr>
<th>Granja</th>
<th>total (n)</th>
<th>Peso (gr)</th>
<th>BPN (n)</th>
<th>Peso (gr)</th>
<th>normal (n)</th>
<th>Peso (gr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>302</td>
<td>2384 ± 67</td>
<td>53</td>
<td>1996 ± 120</td>
<td>249</td>
<td>2771 ± 52</td>
</tr>
<tr>
<td>2</td>
<td>346</td>
<td>2309 ± 62</td>
<td>48</td>
<td>1936 ± 109</td>
<td>298</td>
<td>2682 ± 46</td>
</tr>
<tr>
<td>3</td>
<td>230</td>
<td>2284 ± 82</td>
<td>28</td>
<td>2040 ± 148</td>
<td>202</td>
<td>2528 ± 59</td>
</tr>
<tr>
<td>4</td>
<td>243</td>
<td>2187 ± 98</td>
<td>13</td>
<td>1671 ± 183</td>
<td>230</td>
<td>2702 ± 58</td>
</tr>
<tr>
<td>5</td>
<td>178</td>
<td>2168 ± 62</td>
<td>31</td>
<td>1885 ± 107</td>
<td>147</td>
<td>2452 ± 51</td>
</tr>
<tr>
<td>6</td>
<td>231</td>
<td>2456 ± 74</td>
<td>37</td>
<td>2094 ± 128</td>
<td>194</td>
<td>2817 ± 58</td>
</tr>
</tbody>
</table>

* Medias mínimas cuadráticas ± error estándar.
a, b : P < 0.05

Tabla 8. Ganancia de peso a los ocho días en relación con la condición BPN*

<table>
<thead>
<tr>
<th>Granja</th>
<th>total (n)</th>
<th>Peso (gr)</th>
<th>BPN (n)</th>
<th>Peso (gr)</th>
<th>normal (n)</th>
<th>Peso (gr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>302</td>
<td>1239 ± 55</td>
<td>53</td>
<td>1125 ± 97</td>
<td>249</td>
<td>1354 ± 42</td>
</tr>
<tr>
<td>2</td>
<td>345</td>
<td>1127 ± 50</td>
<td>48</td>
<td>1049 ± 89</td>
<td>297</td>
<td>1205 ± 38</td>
</tr>
<tr>
<td>3</td>
<td>231</td>
<td>1126 ± 67</td>
<td>29</td>
<td>1072 ± 120</td>
<td>202</td>
<td>1180 ± 48</td>
</tr>
<tr>
<td>4</td>
<td>243</td>
<td>958 ± 80</td>
<td>13</td>
<td>773 ± 149</td>
<td>230</td>
<td>1144 ± 47</td>
</tr>
<tr>
<td>5</td>
<td>177</td>
<td>1038 ± 50</td>
<td>31</td>
<td>1008 ± 87</td>
<td>146</td>
<td>1067 ± 42</td>
</tr>
<tr>
<td>6</td>
<td>231</td>
<td>1303 ± 60</td>
<td>37</td>
<td>1186 ± 104</td>
<td>194</td>
<td>1419 ± 47</td>
</tr>
</tbody>
</table>

* Medias mínimas cuadráticas ± error estándar.
a, b : P < 0.01
Discusión

En el presente estudio se encontró una incidencia importante de lechones de BPN al nacimiento (16.8 %), que difiere de los valores informados por Gardner y colaboradores (11.6%) (12) y por Pluske y colaboradores (12.5%) (23). Aunque la causa de su presentación se desconoce todavía, se pueden hacer algunas descripciones y una serie de asociaciones para entender bajo cuáles condiciones aparecen este tipo de animales. Si se asume que la condición de BPN es indeseable, entonces es necesario demostrar porque lo es. De acuerdo con nuestros resultados no se demostró asociación significativa de mayor probabilidad de muerte en los lechones con BPN (P>0.05), bajo nuestro punto de corte de 1000 gr, pero sí bajo el punto de corte de 800 gr (P<0.05).

Tanto la ganancia diaria como la mortalidad son parámetros fundamentales en la producción porcina (24), por ello es necesario establecer algunas asociaciones. En un estudio metaanalítico se demostró que el 10 al 15% de la mortalidad ocurrió en la primera semana de vida (30), mientras que en el presente estudio, la mortalidad para la población general fue del 6.67%, discriminada en 17.47% para los lechones con la condición de BPN y en 4.59% para los lechones de peso normal (P<0.01). Adicional a lo anterior, se halló diferencias significativas (P<0.05) de los lechones de BPN y los lechones normales en cuanto al peso a los 8 días de vida (ver tabla 7). Estos hallazgos demuestran que la condición de bajo peso al nacimiento es indeseable porque está asociada con mayor mortalidad y menor ganancia diaria de peso en la primera semana de vida.

A pesar de lo anterior, el criterio establecido A priori para determinar si un lechón es de bajo peso (< 1000 gr), no fue satisfactorio en este estudio. No hubo diferencia estadísticamente significativa en la mortalidad al nacimiento entre los lechones mayores o menores de 1000 gr (P>0.05). Sin embargo, los lechones nacidos con una condición BPN menor de 800 gramos tuvieron una mortalidad significativamente alta y una reducción de la ganancia diaria de peso (P<0.01) a los 8 días de vida, lo cual sugiere un cambio en el criterio de calificación de la condición de BPN.

Con respecto a las montas cruzadas se halló una relación directa entre el número de machos diferentes por cada servicio y la ocurrencia de lechones con bajo peso al nacimiento (P<0.01); es decir, que para este estudio las montas homopérmicas fueron más beneficiosas por cuanto no estuvieron asociadas a la condición de BPN. Las montas heteropérmicas se practicaban con el fin de aumentar el tamaño de la camada (30) en las granjas de tipo comercial. Nuestros resultados sugieren que esta práctica disminuye el peso individual de los lechones al nacimiento. Para sustentar esta afirmación se hizo una categorización adicional para las montas: las montas con un solo macho se clasificaron como homopérmicas y las montas con varios machos como heteropérmicas y se encontró que las montas homopérmicas mejoraron significativamente (P<0.05) el peso individual al nacimiento y el peso a los 8 días de edad (Resultados no presentados).

La condición BPN no dependió del sexo (P>0.05), diferente a lo hallado por Rydhmer en 1992 (25), quien observó promedios de 1460 y 1430 gr para machos y hembras al nacimiento, respectivamente (P<0.05). Sin embargo, en este estudio se halló que las hembras nacidas con menos de 1000 gr de peso ganaron significativamente más peso a los ocho días que los machos que nacieron con peso menor de 1000 gr (P<0.05).

El factor granja afectó la frecuencia de aparición de la condición de BPN (P<0.05). Lo anterior sugiere que cada granja tiene factores específicos que determinan la frecuencia de lechones de BPN.

Una de las causas posibles del BPN podría ser la causa inmunológica, como resultado de una inadecuada respuesta inmune materna contra los fetos, asociada con un retardo en el crecimiento intrauterino (22). Nuestro grupo de investigación dio inicio a experimentos para tratar de homologar en porcinos resultados favorables de la terapia con linfocitos previa al servicio fértil, en el tamaño y peso de la camada al nacimiento en ratones. Un estudio demostró que la terapia mejoraba el peso de la camada al nacer (18) pero otros dos estudios no demostraron ningún efecto (16, 17). De otro lado, normalmente se registra el peso de la camada, pero el presente estudio, aporta valores de referencia para el peso individual al nacimiento y sirve como un indicador para evaluar los resultados de otros estudios en nuestro medio.

Las diferencias morfológicas halladas en las glándulas adrenales y en la tiroides en los lechones de bajo peso, sugieren un estado de inmadu-
rez en el desarrollo del feto hasta el nacimiento. Los hallazgos en glándulas tiroides concuerdan con el estudio reportado por DeRoth y colaboradores (1980), mientras que los hallazgos en las glándulas adrenales, que presentaron inmadurez tisular y peso normal, difieren de estos autores. El menor desarrollo de la tiroides podría sugerir un patrón de menor producción de hormona tiroides y esto podría asociarse con una cantidad menor de receptores de la hormona (T3) en las células musculares, como se ha descrito en lechones BPN (5), lo cual soporta la afirmación que éstos tienen menor balance energético como consecuencia de un menor metabolismo basal. No obstante, en el presente estudio no se apor-tan elementos significativos para establecer las posibles causas de la condición de BPN. Por consiguiente, futuros estudios en los lechones neonatos podrían orientarse a definir factores que afecten el desarrollo fetal, por interferencia con la madurez histológica y funcional de tejidos como el timo, la tiroides, las glándulas adrenales, el bazo y otros órganos linfoides, que pudieran estar comprometidos con la inducción de la condición BPN.

Si se pudiera evaluar con precisión que el orden de nacimiento equivale al orden de ubicación de los lechones en el cuerno uterino, se podría sospechar de algún compromiso del crecimiento fetal en aquellos fetos ubicados hacia las porciones más estrechas del cuerno. Sin embargo, este factor no pudo ser evaluado en el presente estudio porque si bien no se encontró asociación del orden de nacimiento con el BPN, la relación entre la ubicación en los cuernos y la secuencia de nacimiento solo se podría evaluar por medio de cirugía experimental.

Agradecimientos

A Colciencias por la financiación del proyecto de investigación (Código 1115-05-028-95, Contrato 150-95). Al Comité para el Desarrollo de la Investigación CODI, por la cofinanciación del proyecto (Contrapartidas e incrementales, contrato 150-95). A las empresas que facilitaron las granjas porcinas que participaron en la ejecución del estudio.

Summary

Frequency of low birth weight piglets and its relationship with their survivability during the first week, in six swine commercial farms in Antioquia, Colombia.

From 1802 full-term born piglets in 6 commercial swine farms (n=160 farrows) of the state-like Antioquia, Colombia, and under the criteria of low birth weight (LBW) under 1000 gr., birth weight and 8 days weight was analyzed and associated with: litter size, cross breeding, number of farrows, sow body condition, farm, birth order, sex, mortality, daily gain, histology and relative weight of liver, thyroids, adrenal glands of born dead and born alive piglets. Data were analyzed by multifactorial Anova and simple regression. There were 1663 born alive (92.14 %), 59 mummies (3.27 %), and 80 stillbirths (4.59 %). Forty percent of stillbirth and 16.18% of born alive piglets were LBW (<0.01). The average weight from LBW was 836 (± 14) gr. and from normal piglets was 1420 (± 7 gr.) (P<0.01). LBW piglets tended to have higher mortality at birth (P = 0.052), and a significant reduction of their average daily gain and higher mortality at day 8 of age (P<0.01). LBW piglets did not depend on gender or birth order (P>0.05), but it was associated with farm, parity, sow body condition and homospermic mating (P<0.05). Adrenal glands tended to be lighter on underweight piglets than normal piglets (p = 0.09). There were histological differences between normal and LBW piglets for thyroids and adrenal glands. Further studies are required to define the association between LBW piglets and their morphology and weight of adrenal and thyroid glands, and the causes of LBW piglets in the swine industry. Heterospermic matings are used to increase litter size in commercial farms. Our results suggest that heterospermic matings reduce piglet birth weight (p<0.01).

Key words: adrenals, cross mating, liver, low weight, piglets, thyroid.
Referencias

